Elementary fibrations and groupoids

Jacopo Emmenegger
Università di Genova
joint work with Fabio Pasquali and Giuseppe Rosolini

Topology, Algebra and Categories in Logic
Coimbra, June 2022

Outline

- Lawvere's doctrines as algebraic specifications of logical theories.
- Logical theories with equality as coalgebras for a comonad on theories with conjunctions.
- Lift this characterisation to non-faithful fibrations (proof-relevant theories).
J.E., F. Pasquali, G. Rosolini. Elementary doctrines as coalgebras. J. Pure Appl. Algebra 224, 2020.
J.E., F. Pasquali, G. Rosolini. A 2-comonad for elementary fibrations.

To appear.

Doctrines

A doctrine consists of a category \mathcal{C} with finite products and a functor

$$
C^{\mathrm{op}} \xrightarrow{P} \mathbf{P o s}
$$

F.W. Lawvere. Adjontness in foundations. Dialectica 1969, also in Repr. TAC.
B. Jacobs. Categorical logic and type theory. North Holland 1999.
M.E. Maietti and G. Rosolini. Quotient completion for the foundation of constructive mathematics. Log. Univers. 7, 2013.

Doctrines from theories

T a theory in (a fragment of) a first order multi-sorted language.
\Rightarrow The syntactic doctrine $\mathrm{P}_{T}: \mathcal{C} t \chi_{T}^{\mathrm{op}} \longrightarrow$ Pos.

Doctrines from theories

T a theory in (a fragment of) a first order multi-sorted language.
\Rightarrow The syntactic doctrine $\mathrm{P}_{T}: \mathcal{C t} \chi_{T}^{\mathrm{op}} \longrightarrow$ Pos.

- Indexed on the category of contexts:

$$
\left(y_{1}: S_{1}^{\prime}, \ldots, y_{m}: S_{m}^{\prime}\right) \xrightarrow{\left(t_{1}, \ldots, t_{m}\right)}\left(x_{1}: S_{1}, \ldots, x_{n}: S_{n}\right)
$$

- Fibres are Lindenbaumm-Tarski algebras:

$$
\begin{gathered}
\mathrm{P}_{T}\left(x_{1}: S_{1}, \ldots, x_{n}: S_{n}\right):=\left\{[\alpha] \mid \alpha \in \operatorname{WFF}\left(x_{1}: S_{1}, \ldots, x_{n}: S_{n}\right)\right\} \\
\alpha \leq \beta \quad \text { iff } \quad x_{1}: S_{1}, \ldots, x_{n}: S_{n} \mid \alpha \vdash_{T} \beta
\end{gathered}
$$

- Reindexing is substitution of terms into formulas:

$$
\begin{gathered}
\mathrm{P}_{T}\left(y_{1}: S_{1}^{\prime}, \ldots, y_{m}: S_{m}^{\prime}\right) \stackrel{\left(t_{1}, \ldots, t_{m}\right)^{*}}{\longleftarrow} \mathrm{P}_{T}\left(x_{1}: S_{1}, \ldots, x_{n}: S_{n}\right) \\
\alpha\left[{ }^{t_{1}} / y_{1}, \ldots,,^{t_{m}} / y_{m}\right] \longleftarrow \alpha
\end{gathered}
$$

More examples of doctrines

1. The power-set doctrine $\mathscr{P}: \operatorname{Set}^{\mathrm{op}} \longrightarrow$ Pos.

$$
A \xrightarrow{f} B \quad \longmapsto \quad \mathscr{P}(B) \xrightarrow{f^{-1}} \mathscr{P}(A)
$$

2. The subobjects doctrine $\operatorname{Sub}_{\mathcal{C}}: \mathcal{C}^{\mathrm{op}} \longrightarrow \mathbf{P o s}$, for a category \mathcal{C} with finite limits.

$$
A \xrightarrow{f} B \quad \operatorname{Sub}_{\mathcal{C}}(B) \xrightarrow{f^{*}} \operatorname{Sub}_{\mathcal{C}}(A)
$$

3. The weak subobjects doctrine $\mathrm{wSub}_{\mathcal{C}}: \mathcal{C}^{\mathrm{op}} \longrightarrow \mathbf{P o s}$, for a category \mathcal{C} with finite products and (weak) pullbacks.

$$
A \xrightarrow{f} B \quad(C / B)_{\mathrm{po}} \xrightarrow{f^{*}}(C / A)_{\mathrm{po}}
$$

Also, for $\mathcal{A} \subseteq \operatorname{Arr}(C)$ stable under (weak) pullbacks, take $(\mathcal{A} \cap \mathcal{C} / A)_{\text {po }}$ as the fibre over A.

Elementary doctrines

A doctrine $P: C^{\mathrm{op}} \longrightarrow \mathbf{P o s}$ is primary if

- $P(A)$ has finite meets for every A in \mathcal{A}, and
- $f^{*}: P(B) \longrightarrow P(A)$ preserves finite meets for every $f: A \longrightarrow B$.

Elementary doctrines

A doctrine $P: C^{\mathrm{op}} \longrightarrow$ Pos is primary if

- $P(A)$ has finite meets for every A in \mathcal{A}, and
- $f^{*}: P(B) \longrightarrow P(A)$ preserves finite meets for every $f: A \longrightarrow B$.

A primary doctrine $P: C^{\mathrm{op}} \longrightarrow \mathbf{P o s}$ is elementary if, for every A and I in \mathcal{C}, there are left adjoints

$$
P(I \times A \times A) \underset{\operatorname{pr}_{1,2,2^{*}}}{\stackrel{\exists_{l, A}}{\rightleftarrows}} P(I \times A)
$$

where $\operatorname{pr}_{1,2,2}:=\left\langle\mathrm{pr}_{1}, \operatorname{pr}_{2}, \operatorname{pr}_{2}\right\rangle: I \times A \longrightarrow I \times A \times A$, which satisfy

- Beck-Chevalley, and
- Frobenius Reciprocity: $\exists_{I, A}\left(\alpha \wedge \operatorname{pr}_{1,2,2}^{*} \beta\right)=\exists_{I, A}(\alpha) \wedge \beta$

Elementary doctrines

Proposition

A primary doctrine $P: C^{\mathrm{op}} \longrightarrow \mathbf{P o s}$ is elementary iff for every A in \mathbf{C} there is $\mathrm{Eq}_{A} \in P(A \times A)$, and these are
Reflexive: $x: A \mid T_{A} \vdash \mathrm{Eq}_{A}(x, x)$
Substitutive: $x_{1}: A, x_{2}: A \mid \alpha\left(x_{1}\right) \wedge \mathrm{Eq}_{A}\left(x_{1}, x_{2}\right) \vdash \alpha\left(x_{2}\right)$
Productive: $z: A \times B, z^{\prime}: A \times B$
$\operatorname{Eq}_{A}\left(\operatorname{pr}_{1}(z), \operatorname{pr}_{1}\left(z^{\prime}\right)\right) \wedge \operatorname{Eq}_{B}\left(\operatorname{pr}_{2}(z), \operatorname{pr}_{2}\left(z^{\prime}\right)\right) \vdash \mathrm{Eq}_{A \times B}\left(z, z^{\prime}\right)$

Elementary doctrines

Proposition

A primary doctrine $P: C^{\mathrm{op}} \longrightarrow \mathbf{P o s}$ is elementary iff for every A in \mathbf{C} there is $\mathrm{Eq}_{A} \in P(A \times A)$, and these are
Reflexive: $x: A \mid \top_{A} \vdash \mathrm{Eq}_{A}(x, x)$
Substitutive: $x_{1}: A, x_{2}: A \mid \alpha\left(x_{1}\right) \wedge \mathrm{Eq}_{A}\left(x_{1}, x_{2}\right) \vdash \alpha\left(x_{2}\right)$
Productive: $z: A \times B, z^{\prime}: A \times B$

$$
\operatorname{Eq}_{A}\left(\operatorname{pr}_{1}(z), \operatorname{pr}_{1}\left(z^{\prime}\right)\right) \wedge \operatorname{Eq}_{B}\left(\operatorname{pr}_{2}(z), \operatorname{pr}_{2}\left(z^{\prime}\right)\right) \vdash \operatorname{Eq}_{A \times B}\left(z, z^{\prime}\right)
$$

Then
$\exists_{l, A}(\alpha)=\operatorname{pr}_{1,2}^{*} \alpha \wedge \operatorname{pr}_{2,3}^{*} \operatorname{Eq}_{A}=\left[i: I, x_{1}: A, x_{2}: A \mid \alpha\left(x_{1}\right) \wedge \operatorname{Eq}_{A}\left(x_{1}, x_{2}\right)\right]$
and $\exists_{I, A} \dashv \operatorname{pr}_{1,2,2}^{*}$ amounts to

$$
\begin{aligned}
& i: I, x_{1}: A, x_{2}: A \mid \alpha\left(x_{1}\right) \wedge \mathrm{Eq}_{A}\left(x_{1}, x_{2}\right) \vdash \beta\left(x_{1}, x_{2}\right) \\
& \text { iff } i: I, x: A \mid \alpha(x) \vdash \beta(x, x)
\end{aligned}
$$

Elementary doctrines - Examples

1. The syntactic doctrine $\mathrm{P}_{T}: \mathcal{C t x} \mathrm{X}_{T}^{\mathrm{op}} \longrightarrow \operatorname{Pos}$, when T is a theory in the $T \wedge=$-fragment.

$$
\mathrm{Eq}_{A}:=\left[x_{1}: A, x_{2}: A \mid x_{1}={ }_{A} x_{2}\right]
$$

2. The power-set doctrine $\mathscr{P}: \operatorname{Set}^{\mathrm{op}} \longrightarrow$ Pos.

$$
\mathrm{Eq}_{A}:=\{(x, x) \mid x \in A\} \in \mathscr{P}(A \times A)
$$

3. The subobjects doctrine $\operatorname{Sub}_{\mathcal{C}}$, when \mathcal{C} is a category with finite limits.

$$
\mathrm{Eq}_{A}:=\left[\Delta_{A}: A \hookrightarrow A \times A\right] \in \operatorname{Sub}_{C}(A \times A)
$$

Similarly for the weak subobjects doctrine wSub_{C}.
4. The subdoctrine $A \mapsto(\mathscr{M} \cap \mathcal{C} / A)_{\text {po }}$ of wSub $_{\mathcal{C}}$, when \mathcal{M} is the class of monos of a stable factorisation system on \mathcal{C}.

The 2-category Doc of doctrines

A morphism of doctrines $\mathbf{g}: P \longrightarrow R$ is a pair $\mathbf{g}=(\overline{\mathbf{g}}, \widehat{\mathbf{g}})$ where $\overline{\mathbf{g}}: \mathcal{C} \longrightarrow \mathcal{D}$ is a product-preserving functor and

Example:
For T a first-order theory, morphisms $\mathrm{P}_{T} \longrightarrow \mathscr{P}$ that preserve the corresponding structure of P_{T} are models à la Tarski of T.

The 2-category Doc of doctrines

A morphism of doctrines $\mathbf{g}: P \longrightarrow R$ is a pair $\mathbf{g}=(\overline{\mathbf{g}}, \widehat{\mathbf{g}})$ where $\overline{\mathbf{g}}: \mathcal{C} \longrightarrow \mathcal{D}$ is a product-preserving functor and

Example:
For T a first-order theory, morphisms $\mathrm{P}_{T} \longrightarrow \mathscr{P}$ that preserve the corresponding structure of P_{T} are models à la Tarski of T.

A 2-morphism $\theta: \mathbf{f} \Rightarrow \mathbf{g}$ is a natural transformation $\theta: \overline{\mathbf{f}} \rightarrow \overline{\mathbf{g}}$ that "preserves validity".
Example:
When T is classical and with equality, a 2-morphism
$\theta: \mathbf{f} \Rightarrow \mathbf{g}: \mathrm{P}_{T} \longrightarrow \mathscr{P}$ is an elementary embedding.

Elementary doctrines as coalgebras

$$
\mathbf{E D} \longrightarrow \longrightarrow \mathbf{P D}
$$

Elementary doctrines as coalgebras

Theorem ${ }^{1}$

The forgetful 2-functor $\mathbf{E D} \longrightarrow \mathbf{P D}$ has a right biadjoint.
${ }^{1}$ F. Pasquali. A co-free construction for elementary doctrines. Appl. Categ. Structures 23, 2015.

Elementary doctrines as coalgebras

Theorem ${ }^{1}$

The forgetful 2-functor $\mathbf{E D} \longrightarrow \mathbf{P D}$ has a right biadjoint.

Theorem ${ }^{2}$

- The 2-comonad \mathcal{T} is lax-idempotent.
- The canonical comparison 2-functor \mathcal{K} is a 2-isomorphism.
${ }^{1}$ F. Pasquali. A co-free construction for elementary doctrines. Appl. Categ. Structures 23, 2015.
${ }^{2}$ J.E., F. Pasquali, G. Rosolini. Elementary doctrines as coalgebras. J. Pure Appl. Algebra 224, 2020.

The underlying 2-functor of the 2-comonad \mathfrak{T}

For $P: C^{\mathrm{op}} \longrightarrow$ Pos a primary doctrine, the primary doctrine $\mathcal{T}(P)$ is $\mathcal{D e s}_{p}: P-E q \mathcal{R}^{\mathrm{op}} \longrightarrow$ Pos where
$P-\mathcal{E} q \mathcal{R}$ is the category of P-equivalence relations: pairs (A, ρ) s.t.

- A in C
- $\rho \in P(A \times A)$
- $x: A \mid T_{A} \vdash \rho(x, x)$
- $x_{1}: A, x_{2}: A \mid \rho\left(x_{1}, x_{2}\right) \vdash \rho\left(x_{2}, x_{1}\right)$
- $x_{1}: A, x_{2}: A, x_{3}: A \mid \rho\left(x_{1}, x_{2}\right) \wedge \rho\left(x_{2}, x_{3}\right) \vdash \rho\left(x_{1}, x_{3}\right)$
$\operatorname{Des}_{P}(A, \rho)$ is the sub-poset of $P(A)$ on the descent data:

$$
\left\{\alpha \in P(A) \quad \text { s.t. } \quad x_{1}: A, x_{2}: A \mid \alpha\left(x_{1}\right) \wedge \rho\left(x_{1}, x_{2}\right) \vdash \alpha\left(x_{2}\right)\right\}
$$

Appears in:

- Exact completions.
- Tripos-to-topos.
- Setoid models of extensional type theories.

From indexed posets to fibrations

In a proof-relevant logical system, derivations are labelled by proof-terms:

$$
x: A \mid u: \varphi \vdash p(u): \psi
$$

Semantically, replace indexed posets with indexed categories.

$$
\mathrm{C}^{\mathrm{op}} \xrightarrow{\mathrm{P}} \mathrm{Cat}
$$

From indexed posets to fibrations

In a proof-relevant logical system, derivations are labelled by proof-terms:

$$
x: A \mid u: \varphi \vdash p(u): \psi
$$

Semantically, replace indexed posets with fibrations.

Faithful fibrations are (equivalent to) indexed preorders.

Elementary fibrations

A fibration $K: \mathcal{E} \longrightarrow \mathcal{B}$ is elementary if it has finite products, i.e.

- \mathcal{B} has finite products.
- Every fibre \mathcal{E}_{X} has finite products.
- Both \mathcal{B} and \mathcal{E} have finite products.
- K preserves finite products.
and, for every Z, X in \mathcal{B}, there is

$$
\mathcal{E}_{Z \times X} \frac{\exists_{Z, X}}{\stackrel{\perp}{\operatorname{pr}_{1,2,2^{*}}}} \mathcal{E}_{Z \times X \times X}
$$

where $\operatorname{pr}_{1,2,2}=\left\langle\operatorname{pr}_{1}, \operatorname{pr}_{2}, \operatorname{pr}_{2}\right\rangle: Z \times X \longrightarrow Z \times X \times X$, and the left adjoints satisfy:

- Frobenius Reciprocity, and
- the Beck-Chevalley Condition.

Elementary fibrations - Examples

1. The fibration obtained from an elementary doctrine is an elementary fibration.
2. The fibration $\operatorname{Fam}(C) \longrightarrow$ Set, when C has finite products and a strict initial object.
3. The fibration $\operatorname{cod}_{C}: \mathcal{C}^{2} \longrightarrow \mathcal{C}$, when \mathcal{C} has finite limits.
4. The fibration $\left.\operatorname{cod}\right|_{\mathcal{M}}: \mathcal{M} \longrightarrow \mathcal{C}$, when $(\mathcal{E}, \mathcal{M})$ is a (suitable) orthogonal factorisation system on \mathcal{C}.
5. SCIsoFib \longrightarrow Cat $^{2} \xrightarrow{\text { cod }}$ Cat, where SCIsoFib $=$ split cloven isofibrations and morphisms preserving the cleavage.
(Cf. Hofmann-Streicher's groupoid model of Martin-Löf type theory.)

Transporters

$K: \mathcal{E} \longrightarrow \mathcal{B}$ fibration with products has productive transporters if:

1. for every X in \mathcal{B}, there is a loop at X :

$$
\top_{X} \xrightarrow{\delta_{X}} \mathrm{I}_{X} \quad \stackrel{K}{\longmapsto} \quad X \xrightarrow{\operatorname{pr}_{1,1}} X \times X
$$

2. for every $A \in \mathcal{E}_{X}$, there is a carrier c_{A} for I_{X} at A :

where δ_{A} is constructed from δ_{X}, and
3. for every X, Y in \mathcal{B}, there is a vertical arrow $\chi X, Y$ s.t.

Transporters - Examples

1. Every elementary fibration has productive transporters.

A faithful fibration (\simeq indexed preorder) with finite products is elementary iff it has productive transporters.
2. Every model of Martin-Löf type theory has productive transporters.
The carrier at a type $x: X \mid A(x)$ is given by the elimination rule of the identity type on X.
3. The fibration $\left.\operatorname{cod}\right|_{\mathcal{R}}$ from a (suitable) weak factorisation system (\mathcal{L}, \mathcal{R}) on \mathcal{C} has productive transporters.

A characterisation of elementary fibrations

Theorem ${ }^{3}$

A fibration with products is elementary if and only if

1. it has productive transporters, and
2. all arrows obtained pairing a loop $\delta_{X}: T_{X} \rightarrow \mathrm{I}_{X}$ with certain cartesian arrows over $\operatorname{pr}_{1,2,2}: Z \times X \rightarrow Z \times X \times X$ are locally epic.

Where an arrow $\varphi: A \longrightarrow A^{\prime}$ is locally epic if the function $(-) \circ \varphi: \mathcal{E}_{K B}\left(A^{\prime}, B\right) \longrightarrow \mathcal{E}_{K \varphi}(A, B)$ is injective for every $B \in \mathcal{E}_{K B}$. "Proof terms that do not change the context are determined by pre-composition with φ ".
${ }^{3}$ J.E., F. Pasquali, G. Rosolini. A characterisation of elementary fibrations. Ann. Pure Appl. Logic 2022.

Elementary fibrations as coalgebras

Theorem (E.-Pasquali-Rosolini)

- $\mathcal{T}(K)$ is an elementary fibration and $\mathcal{R}(K)=\mathcal{T}(K)$.
- The comonad \mathfrak{T} is lax-idempotent.
- The canonical comparison 2 -functor \mathcal{K} is a biequivalence.

The underlying 2-functor of the 2-comonad \mathfrak{T}

For $K: \mathcal{E} \longrightarrow C$ a fibration with finite products, the fibration with finite products $\mathcal{T}(K): \mathcal{D e s} K \longrightarrow K-\mathcal{G p d}$ is defined as follows.

K-Gpd is the full subcategory of $\mathcal{G p d}(\mathcal{E})$ on those groupoids \mathbf{X} s.t.

$$
\begin{aligned}
\underset{K}{\mathcal{E}} & T_{X} \leftrightarrows \\
\mathcal{B} & \bar{X} \times{ }_{T_{X}} \bar{X} \\
\leftrightarrows & X \underset{\mathrm{pr}_{2}}{\leftrightarrows} \underset{\mathrm{pr}_{1}}{\leftrightarrows \mathrm{pr}_{1,1}}
\end{aligned} \times X \underset{\mathrm{pr}_{2,3}}{\stackrel{\mathrm{pr}_{1,2}}{\leftrightarrows \mathrm{pr}_{1,3}}} X \times X \times X,
$$

$\operatorname{Des}_{K}(\mathbf{X})$ is a category of descent data for \mathbf{X} :
its objects are pairs (A, α) where $A \in \mathcal{E}_{X}$ and $\operatorname{pr}_{1}^{*} A \wedge \bar{X} \xrightarrow{\alpha} \operatorname{pr}_{2}^{*} A$ plus equations.
$\mathcal{D e s}{ }_{K}(\mathbf{X})$ is defined as a full subcategory of the category of algebras for a monad on K, generated by \mathbf{X}, in the 2-category $\mathbf{F i b}$.

To conclude:

In elementary doctrines, the equality predicate on X can be characterised as a reflexive binary relation Eq_{X} on X such that

$$
A(x) \wedge \operatorname{Eq}_{X}\left(x, x^{\prime}\right) \vdash A\left(x^{\prime}\right)
$$

for every predicate A over X (Leibniz's Indiscernibility of Identicals).
In elementary fibrations, Eq_{X} is a groupoid on X and Indiscernibility of Identicals has witnesses

$$
\mathrm{d}_{A}: A(x) \wedge \operatorname{Eq}_{x}\left(x, x^{\prime}\right) \longrightarrow A\left(x^{\prime}\right)
$$

which are algebras for a monad generated by the groupoid Eq_{x}.
The cofree elementary fibrations $\mathcal{T}(K): \mathcal{D e s}{ }_{K} \longrightarrow K-\mathcal{G} p d$ are fibrations over categories of groupoids and each fibre over a groupoid consists of descent data for the groupoid.
The elementary fibrations are the subfibrations of cofree ones "closed under Indiscernibility of Identicals".

