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Outline

I Lawvere’s doctrines as algebraic specifications of logical
theories.

I Logical theories with equality as coalgebras for a comonad on
theories with conjunctions.

I Lift this characterisation to non-faithful fibrations
(proof-relevant theories).

J.E., F. Pasquali, G. Rosolini. Elementary doctrines as coalgebras.
J. Pure Appl. Algebra 224, 2020.

J.E., F. Pasquali, G. Rosolini. A 2-comonad for elementary fibrations.
To appear.

1



Doctrines

A doctrine consists of a category C with finite products and a
functor

C op P // Pos

F.W. Lawvere. Adjontness in foundations. Dialectica 1969, also in Repr.
TAC.

B. Jacobs. Categorical logic and type theory. North Holland 1999.

M.E. Maietti and G. Rosolini. Quotient completion for the foundation of
constructive mathematics. Log. Univers. 7, 2013.
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Doctrines from theories
T a theory in (a fragment of) a first order multi-sorted language.
⇒ The syntactic doctrine PT : Ctx op

T
// Pos.

I Indexed on the category of contexts:

(y1 :S ′1, . . . , ym :S ′m) (x1 :S1, . . . , xn :Sn)

I Fibres are Lindenbaumm–Tarski algebras:

PT (x1 :S1, . . . , xn :Sn) :=
{

[α]
∣∣∣ α ∈WFF(x1 :S1, . . . , xn :Sn)

}
α ≤ β iff x1 :S1, . . . , xn :Sn

∣∣α `T β

I Reindexing is substitution of terms into formulas:

PT (y1 :S ′1, . . . , ym :S ′m) PT (x1 :S1, . . . , xn :Sn)
(t1,...,tm)∗

oo

α[t1/y1 , . . . ,
tm/ym ] α�oo
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More examples of doctrines
1. The power-set doctrine P: Set op // Pos.

A f // B � // P(B) f −1
//P(A)

2. The subobjects doctrine SubC : C op // Pos, for a category C
with finite limits.

A f // B � // SubC (B) f ∗
// SubC (A)

3. The weak subobjects doctrine wSubC : C op // Pos, for a
category C with finite products and (weak) pullbacks.

A f−→ B � // (C/B)po
f ∗
// (C/A)po

X

x
��

≤ Y
y
��

A

⇐⇒
X

x
��

∃ // Y

y
��

A
Also, for A ⊆ Arr(C ) stable under (weak) pullbacks,
take (A ∩ C/A)po as the fibre over A.
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Elementary doctrines

A doctrine P: C op // Pos is primary if
I P(A) has finite meets for every A in A , and
I f ∗: P(B) // P(A) preserves finite meets for every f : A // B.

A primary doctrine P: C op // Pos is elementary if, for every A and
I in C , there are left adjoints

P(I × A× A) ⊥
pr1,2,2

∗
// P(I × A)

E

I,A
oo

where pr1,2,2 := 〈pr1, pr2,pr2〉: I × A // I × A× A, which satisfy
I Beck-Chevalley, and
I Frobenius Reciprocity:

E

I,A(α ∧ pr∗1,2,2β) =

E

I,A(α) ∧ β
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Elementary doctrines
Proposition
A primary doctrine P: C op // Pos is elementary iff
for every A in C there is EqA ∈ P(A× A), and these are

Reflexive: x :A
∣∣ >A ` EqA(x , x)

Substitutive: x1 :A, x2 :A
∣∣ α(x1) ∧ EqA(x1, x2) ` α(x2)

Productive: z :A× B, z ′ :A× B
∣∣

EqA(pr1(z),pr1(z ′)) ∧ EqB(pr2(z),pr2(z ′)) ` EqA×B(z , z ′)

Then

E

I,A(α) = pr∗1,2α∧pr∗2,3EqA =
[
i : I, x1 :A, x2 :A

∣∣α(x1) ∧ EqA(x1, x2)
]

and

E

I,A a pr∗1,2,2 amounts to

i : I, x1 :A, x2 :A
∣∣α(x1) ∧ EqA(x1, x2) ` β(x1, x2)

iff i : I, x :A
∣∣α(x) ` β(x , x)
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Elementary doctrines - Examples
1. The syntactic doctrine PT : Ctx op

T
// Pos, when T is a theory

in the >∧=-fragment.

EqA :=
[
x1 :A, x2 :A

∣∣ x1 =A x2
]

2. The power-set doctrine P: Set op // Pos.

EqA :=
{

(x , x)
∣∣ x ∈ A

}
∈P(A× A)

3. The subobjects doctrine SubC , when C is a category with finite
limits.

EqA := [∆A: A ↪→ A× A] ∈ SubC (A× A)

Similarly for the weak subobjects doctrine wSubC .

4. The subdoctrine A 7→ (M ∩ C/A)po of wSubC , when M is the
class of monos of a stable factorisation system on C .
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The 2-category Doc of doctrines
A morphism of doctrines g: P // R is a pair g = (g, ĝ) where
g: C // D is a product-preserving functor and

C op
P

))
gop

��

Pos

Dop R

55
•ĝ
��

Example:
For T a first-order theory, morphisms PT //P that preserve the
corresponding structure of PT are models à la Tarski of T .

A 2-morphism θ: f ⇒ g is a natural transformation θ: f . // g that
“preserves validity”.
Example:
When T is classical and with equality, a 2-morphism
θ: f ⇒ g:PT //P is an elementary embedding.
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g: C // D is a product-preserving functor and

C op
P

))
gop

��

Pos

Dop R

55
•ĝ
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Elementary doctrines as coalgebras

ED � � // PD

T

T-Coalg

Theorem1

The forgetful 2-functor ED // PD has a right biadjoint.

Theorem2

I The 2-comonad T is lax-idempotent.
I The canonical comparison 2-functor K is a 2-isomorphism.

1F. Pasquali. A co-free construction for elementary doctrines. Appl. Categ.
Structures 23, 2015.
2J.E., F. Pasquali, G. Rosolini. Elementary doctrines as coalgebras. J. Pure Appl.
Algebra 224, 2020.
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The underlying 2-functor of the 2-comonad T
For P: C op // Pos a primary doctrine,
the primary doctrine T(P) is DesP : P-EqR op // Pos where
P-EqR is the category of P-equivalence relations: pairs (A, ρ) s.t.
I A in C
I ρ ∈ P(A× A)
I x :A

∣∣>A ` ρ(x , x)
I x1 :A, x2 :A

∣∣ ρ(x1, x2) ` ρ(x2, x1)
I x1 :A, x2 :A, x3 :A

∣∣ ρ(x1, x2) ∧ ρ(x2, x3) ` ρ(x1, x3)
DesP(A, ρ) is the sub-poset of P(A) on the descent data:{

α ∈ P(A) s.t. x1 :A, x2 :A
∣∣α(x1) ∧ ρ(x1, x2) ` α(x2)

}
Appears in:
I Exact completions.
I Tripos-to-topos.
I Setoid models of extensional type theories.
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From indexed posets to fibrations
In a proof-relevant logical system, derivations are labelled by
proof-terms:

x :A
∣∣ u :ϕ ` p(u) :ψ

Semantically, replace indexed posets with indexed categories.

C op P // Cat

� //

∫
P
πP
��

C

X � // EX := K−1(X ) �oo

E
K
��

C

Faithful fibrations are (equivalent to) indexed preorders.
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Elementary fibrations

A fibration K : E // B is elementary if it has finite products, i.e.
I B has finite products.
I Every fibre EX has

finite products.
⇔

I Both B and E have finite
products.

I K preserves finite products.

and, for every Z ,X in B , there is

EZ×X

E
Z ,X

//
⊥ EZ×X×X

pr1,2,2
∗

oo

where pr1,2,2 = 〈pr1, pr2, pr2〉: Z × X // Z × X × X , and the left
adjoints satisfy:
I Frobenius Reciprocity, and
I the Beck-Chevalley Condition.
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Elementary fibrations - Examples

1. The fibration obtained from an elementary doctrine is an
elementary fibration.

2. The fibration Fam(C ) // Set , when C has finite products and
a strict initial object.

3. The fibration codC : C 2 // C , when C has finite limits.

4. The fibration cod|M : M // C , when (E ,M ) is a (suitable)
orthogonal factorisation system on C .

5. SCIsoFib // Cat 2 cod // Cat , where SCIsoFib = split cloven
isofibrations and morphisms preserving the cleavage.
(Cf. Hofmann–Streicher’s groupoid model of Martin-Löf type
theory.)
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Transporters
K : E // B fibration with products has productive transporters if:

1. for every X in B , there is a loop at X :

>X
δX // IX

� K // X
pr1,1

// X × X

2. for every A ∈ EX , there is a carrier cA for IX at A:

(pr1
∗A)∧IX

cA // A

AδA

gg

id

==
� K //

X × X
pr2 // X

X
pr1,1

ee

id

<<

where δA is constructed from δX , and

3. for every X ,Y in B , there is a vertical arrow χX ,Y s.t.

IX � IY
χX ,Y

// IX×Y

>X �>Y ∼= >X×Y

δX � δY

hh

δX×Y

66
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Transporters - Examples

1. Every elementary fibration has productive transporters.
A faithful fibration (' indexed preorder) with finite products is
elementary iff it has productive transporters.

2. Every model of Martin-Löf type theory has productive
transporters.
The carrier at a type x :X

∣∣A(x) is given by the elimination rule
of the identity type on X .

3. The fibration cod|R from a (suitable) weak factorisation
system (L ,R ) on C has productive transporters.
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A characterisation of elementary fibrations

Theorem3

A fibration with products is elementary if and only if
1. it has productive transporters, and
2. all arrows obtained pairing a loop δX :>X // IX with certain

cartesian arrows over pr1,2,2: Z × X // Z × X × X are
locally epic.

Where an arrow ϕ: A // A′ is locally epic if the function
(−) ◦ ϕ: EKB(A′,B) // EKϕ(A,B) is injective for every B ∈ EKB.
“Proof terms that do not change the context are determined by
pre-composition with ϕ”.

3J.E., F. Pasquali, G. Rosolini. A characterisation of elementary fibrations. Ann.
Pure Appl. Logic 2022.
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Elementary fibrations as coalgebras

ElFib //

`

K

$$

PrdFib
Roo

T

��

��

`

T-Coalg

OO

Theorem (E.–Pasquali–Rosolini)

I T(K ) is an elementary fibration and R(K ) = T(K ).
I The comonad T is lax-idempotent.
I The canonical comparison 2-functor K is a biequivalence.
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The underlying 2-functor of the 2-comonad T

For K : E // C a fibration with finite products,
the fibration with finite products T(K ): DesK // K -Gpd is defined
as follows.

K -Gpd is the full subcategory of Gpd (E) on those groupoids X s.t.

E

K
��

>X // X̄oo
oo X̄ ×>X X̄

oo

oo
oo

B X pr1,1 // X × X
pr1oo

pr2
oo X × X × X

pr1,2
oo

pr2,3
oo

pr1,3oo

DesK (X) is a category of descent data for X:
its objects are pairs (A, α) where A ∈ EX and pr∗1A ∧ X̄ α //pr∗2A
plus equations.
DesK (X) is defined as a full subcategory of the category of algebras
for a monad on K , generated by X, in the 2-category Fib.
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To conclude:
In elementary doctrines, the equality predicate on X can be
characterised as a reflexive binary relation EqX on X such that

A(x) ∧ EqX (x , x ′) ` A(x ′)

for every predicate A over X (Leibniz’s Indiscernibility of Identicals).

In elementary fibrations, EqX is a groupoid on X and Indiscernibility
of Identicals has witnesses

dA: A(x) ∧ EqX (x , x ′) // A(x ′)

which are algebras for a monad generated by the groupoid EqX .

The cofree elementary fibrations T(K ): DesK // K -Gpd are
fibrations over categories of groupoids and each fibre over a
groupoid consists of descent data for the groupoid.
The elementary fibrations are the subfibrations of cofree ones
“closed under Indiscernibility of Identicals”.
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