Admissibility of Π_2 -Inference Rules: interpolation, model completion, and contact algebras

Luca Carai, University of Salerno

Joint work with: Nick Bezhanishvili, Silvio Ghilardi, and Lucia Landi

TACL 2022, Coimbra

21 June 2022

The symmetric strict implication calculus

An open subset U of a topological space is called regular open if U = int(cl(U)).

An open subset U of a topological space is called regular open if U = int(cl(U)).

Let X be a compact Hausdorff space. The set RO(X) of regular open subsets of X equipped with the well-inside relation $U \prec V$ iff $cl(U) \subseteq V$ forms a de Vries algebra.

An open subset U of a topological space is called regular open if U = int(cl(U)).

Let X be a compact Hausdorff space. The set RO(X) of regular open subsets of X equipped with the well-inside relation $U \prec V$ iff $cl(U) \subseteq V$ forms a de Vries algebra.

Definition

A de Vries algebra is a complete boolean algebra equipped with a binary relation \prec satisfying

```
(S1) 0 \prec 0 and 1 \prec 1;

(S2) a \prec b, c implies a \prec b \land c;

(S3) a, b \prec c implies a \lor b \prec c;

(S4) a \leq b \prec c \leq d implies a \prec d;

(S5) a \prec b implies a \leq b;

(S6) a \prec b implies \neg b \prec \neg a;

(S7) a \prec b implies there is c with a \prec c \prec \neg b;

(S8) a \neq 0 implies there is b \neq 0 with b \prec a.
```

All the information carried by $(RO(X), \prec)$ is enough to recover the compact Hausdorff space X up to homeomorphism.

Moreover, every de Vries algebra is isomorphic to one of the form $(RO(X), \prec)$ for some compact Hausdorff space X.

All the information carried by $(RO(X), \prec)$ is enough to recover the compact Hausdorff space X up to homeomorphism.

Moreover, every de Vries algebra is isomorphic to one of the form $(RO(X), \prec)$ for some compact Hausdorff space X.

Theorem (De Vries duality (1962))

The category of compact Hausdorff spaces is dually equivalent to the category of de Vries algebras.

Let (B, \prec) be a de Vries algebra. We can turn (B, \prec) into a boolean algebra with operators by replacing \prec with a binary operator with values in $\{0,1\}$ (the bottom and top of B).

$$a \rightsquigarrow b = egin{cases} 1 & ext{if } a \prec b, \ 0 & ext{otherwise}. \end{cases}$$

 \rightsquigarrow is the characteristic function of $\prec \subseteq B \times B$.

Let (B, \prec) be a de Vries algebra. We can turn (B, \prec) into a boolean algebra with operators by replacing \prec with a binary operator with values in $\{0,1\}$ (the bottom and top of B).

$$a \rightsquigarrow b = egin{cases} 1 & ext{if } a \prec b, \ 0 & ext{otherwise}. \end{cases}$$

 \rightsquigarrow is the characteristic function of $\prec \subseteq B \times B$.

Definition

Let \mathcal{V} be the variety generated by de Vries algebras in the language of boolean algebras with a binary operator \rightsquigarrow . We call symmetric strict implication algebras the algebras of \mathcal{V} .

Definition (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema (2019))

The symmetric strict implication calculus S²IC is given by the axioms

•
$$[\forall] \varphi \leftrightarrow (\top \rightsquigarrow \varphi),$$

• $(\perp \rightsquigarrow \varphi) \land (\varphi \rightsquigarrow \top),$
• $[(\varphi \lor \psi) \rightsquigarrow \chi] \leftrightarrow [(\varphi \rightsquigarrow \chi) \land (\psi \rightsquigarrow \chi)],$
• $[\varphi \rightsquigarrow (\psi \land \chi)] \leftrightarrow [(\varphi \rightsquigarrow \psi) \land (\varphi \rightsquigarrow \chi)],$
• $(\varphi \rightsquigarrow \psi) \rightarrow (\varphi \rightarrow \psi),$
• $(\varphi \rightsquigarrow \psi) \leftrightarrow (\neg \psi \rightsquigarrow \neg \varphi),$
• $[\forall] \varphi \rightarrow [\forall] [\forall] \varphi,$
• $\neg [\forall] \varphi \rightarrow [\forall] \neg [\forall] \varphi,$
• $(\varphi \rightsquigarrow \psi) \leftrightarrow [\forall] (\varphi \rightsquigarrow \psi),$
• $[\forall] \varphi \rightarrow (\neg [\forall] \varphi \rightsquigarrow \bot),$

and modus ponens (for \rightarrow) and necessitation (for [\forall]).

Theorem (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema (2019))

 $\vdash_{S^{2}IC} \varphi \quad iff \quad (B, \leadsto) \vDash \varphi \text{ for every symmetric strict impl. algebra } (B, \leadsto).$ $\vdash_{S^{2}IC} \varphi \quad iff \quad (B, \prec) \vDash \varphi \text{ for every de Vries algebra } (B, \prec).$ $\vdash_{S^{2}IC} \varphi \quad iff \quad (RO(X), \prec) \vDash \varphi \text{ for every compact Hausdorff space } X.$

Analogous strong completeness results hold.

Theorem (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema (2019))

 $\vdash_{S^{2}IC} \varphi \quad i\!f\!f \quad (B, \rightsquigarrow) \vDash \varphi \text{ for every symmetric strict impl. algebra } (B, \leadsto).$ $\vdash_{S^{2}IC} \varphi \quad i\!f\!f \quad (B, \prec) \vDash \varphi \text{ for every de Vries algebra } (B, \prec).$ $\vdash_{S^{2}IC} \varphi \quad i\!f\!f \quad (RO(X), \prec) \vDash \varphi \text{ for every compact Hausdorff space } X.$

Analogous strong completeness results hold.

Therefore, we can think of S^2IC as the modal calculus of compact Hausdorff spaces where propositional letters are interpreted as regular opens.

When a symmetric strict implication algebra is simple, \rightsquigarrow becomes the characteristic function of a binary relation. Simple symmetric strict implication algebras correspond exactly to contact algebras.

When a symmetric strict implication algebra is simple, \rightsquigarrow becomes the characteristic function of a binary relation. Simple symmetric strict implication algebras correspond exactly to contact algebras.

Definition

A contact algebra is a boolean algebra equipped with a binary relation \prec satisfying the axioms:

(S1) $0 \prec 0$ and $1 \prec 1$; (S2) $a \prec b, c$ implies $a \prec b \land c$; (S3) $a, b \prec c$ implies $a \lor b \prec c$; (S4) $a \leq b \prec c \leq d$ implies $a \prec d$; (S5) $a \prec b$ implies $a \leq b$; (S6) $a \prec b$ implies $\neg b \prec \neg a$. When a symmetric strict implication algebra is simple, \rightsquigarrow becomes the characteristic function of a binary relation. Simple symmetric strict implication algebras correspond exactly to contact algebras.

Definition

A contact algebra is a boolean algebra equipped with a binary relation \prec satisfying the axioms:

(S1) $0 \prec 0$ and $1 \prec 1$; (S2) $a \prec b, c$ implies $a \prec b \land c$; (S3) $a, b \prec c$ implies $a \lor b \prec c$; (S4) $a \leq b \prec c \leq d$ implies $a \prec d$; (S5) $a \prec b$ implies $a \leq b$; (S6) $a \prec b$ implies $\neg b \prec \neg a$.

The variety of symmetric strict implication algebras is a discriminator variety and hence it is generated by its simple algebras which correspond to contact algebras. Therefore,

 $\vdash_{\mathsf{S}^{2}\mathsf{IC}}\varphi \quad \text{iff} \quad (B,\prec)\vDash\varphi \text{ for every contact algebra } (B,\prec).$

Therefore, (S7) and (S8) are not expressible in S^2IC .

- (S7) $a \prec b$ implies there is c with $a \prec c \prec \neg b$;
- (S8) $a \neq 0$ implies there is $b \neq 0$ with $b \prec a$.

What does it mean from the syntactic point of view?

Therefore, (S7) and (S8) are not expressible in S^2IC .

- (S7) $a \prec b$ implies there is c with $a \prec c \prec \neg b$;
- (S8) $a \neq 0$ implies there is $b \neq 0$ with $b \prec a$.

What does it mean from the syntactic point of view?

Theorem

For each Π_2 -sentence Φ there is an inference rule ρ such that

 $\vdash_{\mathsf{S}^{2}\mathsf{IC}+\rho}\varphi \ \text{ iff } (B,\prec)\vDash\varphi \text{ for every contact algebra } (B,\prec) \text{ satisfying } \Phi.$

Therefore, (S7) and (S8) are not expressible in S^2IC .

(S7)
$$a \prec b$$
 implies there is c with $a \prec c \prec \neg b$;

(S8) $a \neq 0$ implies there is $b \neq 0$ with $b \prec a$.

What does it mean from the syntactic point of view?

Theorem

For each Π_2 -sentence Φ there is an inference rule ρ such that

 $\vdash_{\mathsf{S}^{2}\mathsf{IC}+\rho}\varphi \ \text{ iff } (B,\prec)\vDash\varphi \text{ for every contact algebra } (B,\prec) \text{ satisfying } \Phi.$

The rules corresponding to (S7) and (S8) are

$$(\rho_7) \quad \frac{(\varphi \rightsquigarrow p) \land (p \rightsquigarrow \psi) \to \chi}{(\varphi \rightsquigarrow \psi) \to \chi} \qquad (\rho_8) \quad \frac{p \land (p \rightsquigarrow \varphi) \to \chi}{\varphi \to \chi}$$

That (S7) and (S8) are not expressible in S²IC corresponds to the fact that these two rules are admissible in S²IC.

Π_2 -rules

An inference rule ρ is a Π_2 -rule if it is of the form

$$\frac{F(\underline{\varphi}/\underline{x},\underline{y}) \to \chi}{G(\underline{\varphi}/\underline{x}) \to \chi}$$

where $F(\underline{x}, \underline{y}), G(\underline{x})$ are propositional formulas.

We say that θ is obtained from ψ by an application of the rule ρ if

$$\psi = F(\underline{\varphi}/\underline{x}, \underline{y}) \to \chi \text{ and } \theta = G(\underline{\varphi}/\underline{x}) \to \chi,$$

where $\underline{\varphi}$ is a tuple of formulas, χ is a formula, and \underline{y} is a tuple of propositional letters not occurring in φ and χ .

An inference rule ρ is a Π_2 -rule if it is of the form

$$\frac{F(\underline{\varphi}/\underline{x},\underline{y}) \to \chi}{G(\underline{\varphi}/\underline{x}) \to \chi}$$

where $F(\underline{x}, \underline{y}), G(\underline{x})$ are propositional formulas.

We say that θ is obtained from ψ by an application of the rule ρ if

$$\psi = F(\underline{\varphi}/\underline{x}, \underline{y}) \to \chi \text{ and } \theta = G(\underline{\varphi}/\underline{x}) \to \chi,$$

where $\underline{\varphi}$ is a tuple of formulas, χ is a formula, and \underline{y} is a tuple of propositional letters not occurring in φ and χ .

Let S be a propositional modal system. We say that the rule ρ is admissible in S if $\vdash_{S+\rho} \varphi$ implies $\vdash_S \varphi$ for each formula φ .

First method

Conservative extensions

We say that $\varphi(\underline{x}) \wedge \psi(\underline{x}, y)$ is a conservative extension of $\varphi(\underline{x})$ in S if

$$\vdash_{\mathcal{S}} \varphi(\underline{x}) \land \psi(\underline{x}, \underline{y}) \to \chi(\underline{x}) \text{ implies } \vdash_{\mathcal{S}} \varphi(\underline{x}) \to \chi(\underline{x})$$

for every formula $\chi(\underline{x})$.

We say that $\varphi(\underline{x}) \wedge \psi(\underline{x}, \underline{y})$ is a conservative extension of $\varphi(\underline{x})$ in S if

$$\vdash_{\mathcal{S}} \varphi(\underline{x}) \land \psi(\underline{x}, \underline{y}) \to \chi(\underline{x}) \text{ implies } \vdash_{\mathcal{S}} \varphi(\underline{x}) \to \chi(\underline{x})$$

for every formula $\chi(\underline{x})$.

Theorem

If S has the interpolation property, then a Π_2 -rule ρ is admissible in S iff $G(\underline{x}) \wedge F(\underline{x}, \underline{y})$ is a conservative extension of $G(\underline{x})$ in S.

We say that $\varphi(\underline{x}) \wedge \psi(\underline{x}, \underline{y})$ is a conservative extension of $\varphi(\underline{x})$ in S if

$$\vdash_{\mathcal{S}} \varphi(\underline{x}) \land \psi(\underline{x}, \underline{y}) \to \chi(\underline{x}) \text{ implies } \vdash_{\mathcal{S}} \varphi(\underline{x}) \to \chi(\underline{x})$$

for every formula $\chi(\underline{x})$.

Theorem

If S has the interpolation property, then a Π_2 -rule ρ is admissible in S iff $G(\underline{x}) \wedge F(\underline{x}, \underline{y})$ is a conservative extension of $G(\underline{x})$ in S.

Therefore, if S has the interpolation property and conservativity is decidable in S, then Π_2 -rules are effectively recognizable in S.

Corollary

The admissibility problem for Π_2 -rules is

- NEXPTIME-complete in K and S5;
- *in* EXPSPACE *and* NEXPTIME-*hard in* S4.

Second method

Uniform interpolants

An S5-modality $[\forall]$ is called a universal modality if

$$\vdash_{\mathcal{S}} \bigwedge_{i=1}^{n} [\forall] (\varphi_i \leftrightarrow \psi_i) \rightarrow (\Box[\varphi_1, \ldots, \varphi_n] \leftrightarrow \Box[\psi_1, \ldots, \psi_n])$$

for every modality \Box of S.

An S5-modality $[\forall]$ is called a universal modality if

$$\vdash_{\mathcal{S}} \bigwedge_{i=1}^{n} [\forall] (\varphi_i \leftrightarrow \psi_i) \rightarrow (\Box[\varphi_1, \ldots, \varphi_n] \leftrightarrow \Box[\psi_1, \ldots, \psi_n])$$

for every modality \Box of S.

If $\varphi(\underline{x}, \underline{y})$ is a formula, its right global uniform pre-interpolant $\forall_{\underline{x}} \varphi(\underline{y})$ is a formula such that for every $\psi(y, \underline{z})$ we have that

$$\psi(\underline{y},\underline{z}) \vdash_{\mathcal{S}} \varphi(\underline{x},\underline{y}) \text{ iff } \psi(\underline{y},\underline{z}) \vdash_{\mathcal{S}} \forall_{\underline{x}} \varphi(\underline{y}).$$

An S5-modality $[\forall]$ is called a universal modality if

$$\vdash_{\mathcal{S}} \bigwedge_{i=1}^{n} [\forall](\varphi_i \leftrightarrow \psi_i) \rightarrow (\Box[\varphi_1, \ldots, \varphi_n] \leftrightarrow \Box[\psi_1, \ldots, \psi_n])$$

for every modality \Box of S.

If $\varphi(\underline{x}, \underline{y})$ is a formula, its right global uniform pre-interpolant $\forall_{\underline{x}} \varphi(\underline{y})$ is a formula such that for every $\psi(y, \underline{z})$ we have that

$$\psi(\underline{y},\underline{z}) \vdash_{\mathcal{S}} \varphi(\underline{x},\underline{y}) \text{ iff } \psi(\underline{y},\underline{z}) \vdash_{\mathcal{S}} \forall_{\underline{x}} \varphi(\underline{y}).$$

Theorem

Suppose that S has uniform global pre-interpolants and a universal modality [\forall]. Then a Π_2 -rule ρ is admissible in S iff

$$\vdash_{\mathcal{S}} [\forall] \forall_{\underline{y}} (F(\underline{x}, \underline{y}) \to z) \to (G(\underline{x}) \to z).$$

Third method

Simple algebras and model completions

To a $\Pi_2\text{-rule}$ we associate the first-order formula

$$\Pi(\rho) := \forall \underline{x}, z \Big(G(\underline{x}) \nleq z \Rightarrow \exists \underline{y} : F(\underline{x}, \underline{y}) \nleq z \Big).$$

Theorem

Suppose that S has a universal modality. A Π_2 -rule ρ is admissible in S iff for each simple S-algebra B there is a simple S-algebra C such that B is a subalgebra of C and $C \models \Pi(\rho)$. To a $\Pi_2\text{-rule}$ we associate the first-order formula

$$\Pi(\rho) := \forall \underline{x}, z \Big(G(\underline{x}) \nleq z \Rightarrow \exists \underline{y} : F(\underline{x}, \underline{y}) \nleq z \Big).$$

Theorem

Suppose that S has a universal modality. A Π_2 -rule ρ is admissible in S iff for each simple S-algebra B there is a simple S-algebra C such that B is a subalgebra of C and $C \models \Pi(\rho)$.

In the presence of a universal modality, an $\mathcal S\text{-algebra}$ is simple iff

$$[\forall] x = \begin{cases} 1 & \text{ if } x = 1, \\ 0 & \text{ otherwise} \end{cases}$$

To a $\Pi_2\text{-rule}$ we associate the first-order formula

$$\Pi(\rho) := \forall \underline{x}, z \Big(G(\underline{x}) \nleq z \Rightarrow \exists \underline{y} : F(\underline{x}, \underline{y}) \nleq z \Big).$$

Theorem

Suppose that S has a universal modality. A Π_2 -rule ρ is admissible in S iff for each simple S-algebra B there is a simple S-algebra C such that B is a subalgebra of C and $C \models \Pi(\rho)$.

In the presence of a universal modality, an $\mathcal S\text{-algebra}$ is simple iff

$$[\forall] x = \begin{cases} 1 & \text{ if } x = 1, \\ 0 & \text{ otherwise.} \end{cases}$$

Moreover, S-algebras form a discriminator variety. Therefore, the variety of S-algebras is generated by the simple S-algebras.

The model completion of a universal first-order theory T, if it exists, is the theory of the existentially closed models of T.

The model completion of a universal first-order theory T, if it exists, is the theory of the existentially closed models of T.

Let T be a universal theory in a finite language. If T is locally finite and has the amalgamation property, then it admits a model completion.

The model completion of a universal first-order theory T, if it exists, is the theory of the existentially closed models of T.

Let T be a universal theory in a finite language. If T is locally finite and has the amalgamation property, then it admits a model completion.

Theorem

Suppose that S has a universal modality and let T_S be the first-order theory of the simple S-algebras. If T_S has a model completion T_S^* , then a Π_2 -rule ρ is admissible in S iff $T_S^* \models \Pi(\rho)$ where

$$\Pi(\rho) := \forall \underline{x}, z \Big(G(\underline{x}) \nleq z \Rightarrow \exists \underline{y} : F(\underline{x}, \underline{y}) \nleq z \Big).$$

Model completion of contact algebras and admissibility in S²IC

The theory of contact algebras Con is locally finite and has the amalgamation property. Therefore, it admits a model completion Con^{*}.

Moreover, the modality $[\forall]$ defined by $[\forall]\varphi := \top \rightsquigarrow \varphi$ is a universal modality. Thus, our third criterion applies.

The theory of contact algebras Con is locally finite and has the amalgamation property. Therefore, it admits a model completion Con^{*}.

Moreover, the modality $[\forall]$ defined by $[\forall]\varphi := \top \rightsquigarrow \varphi$ is a universal modality. Thus, our third criterion applies.

Proposition

Let (B, \prec) be a contact algebra. We have that (B, \prec) is existentially closed iff

$$(B,\prec)$$

The theory of contact algebras Con is locally finite and has the amalgamation property. Therefore, it admits a model completion Con^{*}.

Moreover, the modality $[\forall]$ defined by $[\forall]\varphi := \top \rightsquigarrow \varphi$ is a universal modality. Thus, our third criterion applies.

Proposition

Let (B, \prec) be a contact algebra. We have that (B, \prec) is existentially closed iff for any finite subalgebra $(B_0, \prec) \subseteq (B, \prec)$

$$(B,\prec)$$

$$\bigcirc
(B_0,\prec)$$

The theory of contact algebras Con is locally finite and has the amalgamation property. Therefore, it admits a model completion Con^{*}.

Moreover, the modality $[\forall]$ defined by $[\forall]\varphi := \top \rightsquigarrow \varphi$ is a universal modality. Thus, our third criterion applies.

Proposition

Let (B, \prec) be a contact algebra. We have that (B, \prec) is existentially closed iff for any finite subalgebra $(B_0, \prec) \subseteq (B, \prec)$ and for any finite extension $(C, \prec) \supseteq (B_0, \prec)$

$$(B,\prec)$$

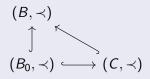
$$(B_0,\prec) \longleftrightarrow (C,\prec)$$

The theory of contact algebras Con is locally finite and has the amalgamation property. Therefore, it admits a model completion Con^{*}.

Moreover, the modality $[\forall]$ defined by $[\forall]\varphi := \top \rightsquigarrow \varphi$ is a universal modality. Thus, our third criterion applies.

Proposition

Let (B, \prec) be a contact algebra. We have that (B, \prec) is existentially closed iff for any finite subalgebra $(B_0, \prec) \subseteq (B, \prec)$ and for any finite extension $(C, \prec) \supseteq (B_0, \prec)$ there exists an embedding $(C, \prec) \hookrightarrow (B, \prec)$ such that the following diagram commutes



The model completion Con^{*} of the theory of contact algebras is finitely axiomatizable.

An axiomatization is given by the axioms of contact algebras together with the following three sentences.

The model completion Con^{*} of the theory of contact algebras is finitely axiomatizable.

An axiomatization is given by the axioms of contact algebras together with the following three sentences.

$$\begin{aligned} \forall a, b_1, b_2 \ (a \neq 0 \& \ (b_1 \lor b_2) \land a = 0 \& a \prec a \lor b_1 \lor b_2 \Rightarrow \\ \exists a_1, a_2 \ (a_1 \lor a_2 = a \& a_1 \land a_2 = 0 \& a_1 \neq 0 \& a_2 \neq 0 \& a_1 \prec a_1 \lor b_1 \\ \& a_2 \prec a_2 \lor b_2)) \end{aligned}$$

$$\begin{array}{l} \forall a, b \ (a \land b = 0 \And a \not\prec \neg b \Rightarrow \exists a_1, a_2 \ (a_1 \lor a_2 = a \And a_1 \land a_2 = 0 \\ \& a_1 \not\prec \neg b \And a_2 \not\prec \neg b \And a_1 \prec \neg a_2)) \end{array}$$

 $\forall a \ (a \neq 0 \Rightarrow \exists a_1, a_2 \ (a_1 \lor a_2 = a \And a_1 \land a_2 = 0 \And a_1 \prec a \And a_1 \not\prec a_1))$

The model completion Con^{*} of the theory of contact algebras is finitely axiomatizable.

An axiomatization is given by the axioms of contact algebras together with the following three sentences.

$$\begin{array}{l} \forall a, b_1, b_2 \ (a \neq 0 \& \ (b_1 \lor b_2) \land a = 0 \& \ a \prec a \lor b_1 \lor b_2 \Rightarrow \\ \exists a_1, a_2 \ (a_1 \lor a_2 = a \& \ a_1 \land a_2 = 0 \& \ a_1 \neq 0 \& \ a_2 \neq 0 \& \ a_1 \prec a_1 \lor b_1 \\ \& \ a_2 \prec a_2 \lor b_2)) \end{array}$$

$$\forall a, b (a \land b = 0 \& a \not\prec \neg b \Rightarrow \exists a_1, a_2 (a_1 \lor a_2 = a \& a_1 \land a_2 = 0 \\ \& a_1 \not\prec \neg b \& a_2 \not\prec \neg b \& a_1 \prec \neg a_2))$$

 $\forall a \ (a \neq 0 \Rightarrow \exists a_1, a_2 \ (a_1 \lor a_2 = a \And a_1 \land a_2 = 0 \And a_1 \prec a \And a_1 \not\prec a_1))$

The model completion Con^{*} of the theory of contact algebras is finitely axiomatizable.

An axiomatization is given by the axioms of contact algebras together with the following three sentences.

 $\forall a, b_1, b_2 \ (a \neq 0 \& \ (b_1 \lor b_2) \land a = 0 \& a \prec a \lor b_1 \lor b_2 \Rightarrow \\ \exists a_1, a_2 \ (a_1 \lor a_2 = a \& a_1 \land a_2 = 0 \& a_1 \neq 0 \& a_2 \neq 0 \& a_1 \prec a_1 \lor b_1 \\ \& a_2 \prec a_2 \lor b_2))$

 $\forall a, b (a \land b = 0 \& a \not\prec \neg b \Rightarrow \exists a_1, a_2 (a_1 \lor a_2 = a \& a_1 \land a_2 = 0 \\ \& a_1 \not\prec \neg b \& a_2 \not\prec \neg b \& a_1 \prec \neg a_2))$

 $\forall a \ (a \neq 0 \Rightarrow \exists a_1, a_2 \ (a_1 \lor a_2 = a \& a_1 \land a_2 = 0 \& a_1 \prec a \& a_1 \not\prec a_1))$

The two Π_2 -rules we saw at the beginning

$$(\rho_7) \quad \frac{(\varphi \rightsquigarrow p) \land (p \rightsquigarrow \psi) \to \chi}{(\varphi \rightsquigarrow \psi) \to \chi} \qquad (\rho_8) \quad \frac{p \land (p \rightsquigarrow \varphi) \to \chi}{\varphi \to \chi}$$

correspond to the $\Pi_2\text{-sentences}$

$$\begin{split} \Pi(\rho_7) \quad \forall x_1, x_2, y \, (x_1 \rightsquigarrow x_2 \nleq y \to \exists z : (x_1 \rightsquigarrow z) \land (z \rightsquigarrow x_2) \le y); \\ \Pi(\rho_8) \quad \forall x, y \, (x \nleq y \to \exists z : z \land (z \rightsquigarrow x) \nleq y). \end{split}$$

The two $\Pi_2\text{-rules}$ we saw at the beginning

$$(\rho_7) \quad \frac{(\varphi \rightsquigarrow p) \land (p \rightsquigarrow \psi) \to \chi}{(\varphi \rightsquigarrow \psi) \to \chi} \qquad (\rho_8) \quad \frac{p \land (p \rightsquigarrow \varphi) \to \chi}{\varphi \to \chi}$$

correspond to the Π_2 -sentences

$$\begin{split} \Pi(\rho_7) \quad \forall x_1, x_2, y \, (x_1 \rightsquigarrow x_2 \nleq y \to \exists z : (x_1 \rightsquigarrow z) \land (z \rightsquigarrow x_2) \le y); \\ \Pi(\rho_8) \quad \forall x, y \, (x \nleq y \to \exists z : z \land (z \rightsquigarrow x) \nleq y). \end{split}$$

We can use our result to show that these rules are admissible in S²IC. Indeed, it is sufficient to use the finite axiomatization of Con^{*} to show that Con^{*} proves $\Pi(\rho_7)$ and $\Pi(\rho_8)$.

The Π_2 -rule

$$(\rho_9) \quad \frac{(p \rightsquigarrow p) \land (\varphi \rightsquigarrow p) \land (p \rightsquigarrow \psi) \to \chi}{(\varphi \rightsquigarrow \psi) \to \chi}$$

corresponds to the Π_2 -sentence

$$\Pi(\rho_9) \quad \forall x, y, z \, (x \rightsquigarrow y \nleq z \rightarrow \exists u : (u \rightsquigarrow u) \land (x \rightsquigarrow u) \land (u \rightsquigarrow y) \nleq z)$$

which holds in (RO(X), \prec) iff X is a Stone space.

The Π_2 -rule

$$(\rho_9) \quad \frac{(p \rightsquigarrow p) \land (\varphi \rightsquigarrow p) \land (p \rightsquigarrow \psi) \to \chi}{(\varphi \rightsquigarrow \psi) \to \chi}$$

corresponds to the Π_2 -sentence

$$\Pi(\rho_9) \quad \forall x, y, z \, (x \rightsquigarrow y \nleq z \rightarrow \exists u : (u \rightsquigarrow u) \land (x \rightsquigarrow u) \land (u \rightsquigarrow y) \nleq z)$$

which holds in $(RO(X), \prec)$ iff X is a Stone space.

Using the finite axiomatization it can be shown that Con^{*} proves $\Pi(\rho_9)$. Therefore, we obtain as a corollary that S²IC is complete wrt Stone spaces.

Corollary

$$\vdash_{\mathsf{S}^2\mathsf{IC}} \varphi$$
 iff $\mathsf{RO}(X) \vDash \varphi$ for every Stone space X.

This fact was proved in (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema (2019)) using different methods.

THANK YOU!