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The symmetric strict implication calculus



Definition

An open subset U of a topological space is called regular open if
U = int(cl(U)).

Let X be a compact Hausdorff space. The set RO(X ) of regular open
subsets of X equipped with the well-inside relation U ≺ V iff cl(U) ⊆ V
forms a de Vries algebra.

Definition

A de Vries algebra is a complete boolean algebra equipped with a binary
relation ≺ satisfying

(S1) 0 ≺ 0 and 1 ≺ 1;
(S2) a ≺ b, c implies a ≺ b ∧ c;
(S3) a, b ≺ c implies a ∨ b ≺ c ;
(S4) a ≤ b ≺ c ≤ d implies a ≺ d ;
(S5) a ≺ b implies a ≤ b;
(S6) a ≺ b implies ¬b ≺ ¬a;
(S7) a ≺ b implies there is c with a ≺ c ≺ ¬b;
(S8) a 6= 0 implies there is b 6= 0 with b ≺ a.
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All the information carried by (RO(X ),≺) is enough to recover the
compact Hausdorff space X up to homeomorphism.

Moreover, every de Vries algebra is isomorphic to one of the form
(RO(X ),≺) for some compact Hausdorff space X .

Theorem (De Vries duality (1962))

The category of compact Hausdorff spaces is dually equivalent to the
category of de Vries algebras.
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Let (B,≺) be a de Vries algebra. We can turn (B,≺) into a boolean
algebra with operators by replacing ≺ with a binary operator with values in
{0, 1} (the bottom and top of B).

a b =

{
1 if a ≺ b,

0 otherwise.

 is the characteristic function of ≺ ⊆ B × B.

Definition

Let V be the variety generated by de Vries algebras in the language of
boolean algebras with a binary operator  . We call symmetric strict
implication algebras the algebras of V.
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Definition (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema
(2019))

The symmetric strict implication calculus S2IC is given by the axioms

[∀]ϕ↔ (> ϕ),

(⊥ ϕ) ∧ (ϕ >),

[(ϕ ∨ ψ) χ]↔ [(ϕ χ) ∧ (ψ  χ)],

[ϕ (ψ ∧ χ)]↔ [(ϕ ψ) ∧ (ϕ χ)],

(ϕ ψ)→ (ϕ→ ψ),

(ϕ ψ)↔ (¬ψ  ¬ϕ),

[∀]ϕ→ [∀][∀]ϕ,

¬[∀]ϕ→ [∀]¬[∀]ϕ,

(ϕ ψ)↔ [∀](ϕ ψ),

[∀]ϕ→ (¬[∀]ϕ ⊥),

and modus ponens (for →) and necessitation (for [∀]).
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Theorem (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema
(2019))

`S2IC ϕ iff (B, ) � ϕ for every symmetric strict impl. algebra (B, ).

`S2IC ϕ iff (B,≺) � ϕ for every de Vries algebra (B,≺).

`S2IC ϕ iff (RO(X ),≺) � ϕ for every compact Hausdorff space X .

Analogous strong completeness results hold.

Therefore, we can think of S2IC as the modal calculus of compact
Hausdorff spaces where propositional letters are interpreted as regular
opens.
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When a symmetric strict implication algebra is simple,  becomes the
characteristic function of a binary relation. Simple symmetric strict
implication algebras correspond exactly to contact algebras.

Definition

A contact algebra is a boolean algebra equipped with a binary relation ≺
satisfying the axioms:

(S1) 0 ≺ 0 and 1 ≺ 1;
(S2) a ≺ b, c implies a ≺ b ∧ c ;
(S3) a, b ≺ c implies a ∨ b ≺ c ;
(S4) a ≤ b ≺ c ≤ d implies a ≺ d ;
(S5) a ≺ b implies a ≤ b;
(S6) a ≺ b implies ¬b ≺ ¬a.

The variety of symmetric strict implication algebras is a discriminator
variety and hence it is generated by its simple algebras which correspond
to contact algebras. Therefore,

`S2IC ϕ iff (B,≺) � ϕ for every contact algebra (B,≺).
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Therefore, (S7) and (S8) are not expressible in S2IC.

(S7) a ≺ b implies there is c with a ≺ c ≺ ¬b;
(S8) a 6= 0 implies there is b 6= 0 with b ≺ a.

What does it mean from the syntactic point of view?

Theorem

For each Π2-sentence Φ there is an inference rule ρ such that

`S2IC+ρ ϕ iff (B,≺) � ϕ for every contact algebra (B,≺) satisfying Φ.

The rules corresponding to (S7) and (S8) are

(ρ7)
(ϕ p) ∧ (p  ψ)→ χ

(ϕ ψ)→ χ
(ρ8)

p ∧ (p  ϕ)→ χ
ϕ→ χ

That (S7) and (S8) are not expressible in S2IC corresponds to the fact
that these two rules are admissible in S2IC.
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Π2-rules



Definition

An inference rule ρ is a Π2-rule if it is of the form

F (ϕ/x , y)→ χ

G (ϕ/x)→ χ

where F (x , y),G (x) are propositional formulas.

We say that θ is obtained from ψ by an application of the rule ρ if

ψ = F (ϕ/x , y)→ χ and θ = G (ϕ/x)→ χ,

where ϕ is a tuple of formulas, χ is a formula, and y is a tuple of
propositional letters not occurring in ϕ and χ.

Let S be a propositional modal system. We say that the rule ρ is
admissible in S if `S+ρ ϕ implies `S ϕ for each formula ϕ.
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First method

Conservative extensions



We say that ϕ(x) ∧ ψ(x , y) is a conservative extension of ϕ(x) in S if

`S ϕ(x) ∧ ψ(x , y)→ χ(x) implies `S ϕ(x)→ χ(x)

for every formula χ(x).

Theorem

If S has the interpolation property, then a Π2-rule ρ is admissible in S iff
G (x) ∧ F (x , y) is a conservative extension of G (x) in S.

Therefore, if S has the interpolation property and conservativity is
decidable in S, then Π2-rules are effectively recognizable in S.

Corollary

The admissibility problem for Π2-rules is

NexpTime-complete in K and S5;

in ExpSpace and NexpTime-hard in S4.
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Second method

Uniform interpolants



An S5-modality [∀] is called a universal modality if

`S
n∧

i=1

[∀](ϕi ↔ ψi )→ (�[ϕ1, . . . , ϕn]↔ �[ψ1, . . . , ψn])

for every modality � of S.

If ϕ(x , y) is a formula, its right global uniform pre-interpolant ∀xϕ(y) is a
formula such that for every ψ(y , z) we have that

ψ(y , z) `S ϕ(x , y) iff ψ(y , z) `S ∀xϕ(y).

Theorem

Suppose that S has uniform global pre-interpolants and a universal
modality [∀]. Then a Π2-rule ρ is admissible in S iff

`S [∀]∀y (F (x , y)→ z)→ (G (x)→ z).
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Third method

Simple algebras and model completions



To a Π2-rule we associate the first-order formula

Π(ρ) := ∀x , z
(
G (x) � z ⇒ ∃y : F (x , y) � z

)
.

Theorem

Suppose that S has a universal modality. A Π2-rule ρ is admissible in S iff
for each simple S-algebra B there is a simple S-algebra C such that B is a
subalgebra of C and C |= Π(ρ).

In the presence of a universal modality, an S-algebra is simple iff

[∀]x =

{
1 if x = 1,

0 otherwise.

Moreover, S-algebras form a discriminator variety. Therefore, the variety
of S-algebras is generated by the simple S-algebras.
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The model completion of a universal first-order theory T , if it exists, is the
theory of the existentially closed models of T .

Let T be a universal theory in a finite language. If T is locally finite and
has the amalgamation property, then it admits a model completion.

Theorem

Suppose that S has a universal modality and let TS be the first-order
theory of the simple S-algebras. If TS has a model completion T ?

S , then a
Π2-rule ρ is admissible in S iff T ?

S |= Π(ρ) where

Π(ρ) := ∀x , z
(
G (x) � z ⇒ ∃y : F (x , y) � z

)
.
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Model completion of contact algebras and
admissibility in S2IC



Theorem

The theory of contact algebras Con is locally finite and has the
amalgamation property. Therefore, it admits a model completion Con?.

Moreover, the modality [∀] defined by [∀]ϕ := > ϕ is a universal
modality. Thus, our third criterion applies.

Proposition

Let (B,≺) be a contact algebra. We have that (B,≺) is existentially
closed iff

for any finite subalgebra (B0,≺) ⊆ (B,≺) and for any finite
extension (C ,≺) ⊇ (B0,≺) there exists an embedding (C ,≺) ↪→ (B,≺)
such that the following diagram commutes

(B,≺)

(B0,≺) (C ,≺)
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Theorem

The model completion Con? of the theory of contact algebras is finitely
axiomatizable.

An axiomatization is given by the axioms of contact algebras together with
the following three sentences.
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∀a, b1, b2 (a 6= 0 & (b1 ∨ b2) ∧ a = 0 & a ≺ a ∨ b1 ∨ b2 ⇒
∃a1, a2 (a1 ∨ a2 = a & a1 ∧ a2 = 0 & a1 6= 0 & a2 6= 0 & a1 ≺ a1 ∨ b1

& a2 ≺ a2 ∨ b2))

∀a, b (a ∧ b = 0 & a 6≺ ¬b ⇒ ∃a1, a2 (a1 ∨ a2 = a & a1 ∧ a2 = 0

& a1 6≺ ¬b & a2 6≺ ¬b & a1 ≺ ¬a2))

∀a (a 6= 0⇒ ∃a1, a2 (a1 ∨ a2 = a & a1 ∧ a2 = 0 & a1 ≺ a & a1 6≺ a1))
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The two Π2-rules we saw at the beginning

(ρ7)
(ϕ p) ∧ (p  ψ)→ χ

(ϕ ψ)→ χ
(ρ8)

p ∧ (p  ϕ)→ χ
ϕ→ χ

correspond to the Π2-sentences

Π(ρ7) ∀x1, x2, y (x1  x2 � y → ∃z : (x1  z) ∧ (z  x2) ≤ y);

Π(ρ8) ∀x , y (x � y → ∃z : z ∧ (z  x) � y).

We can use our result to show that these rules are admissible in S2IC.
Indeed, it is sufficient to use the finite axiomatization of Con? to show
that Con? proves Π(ρ7) and Π(ρ8).
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The Π2-rule

(ρ9)
(p  p) ∧ (ϕ p) ∧ (p  ψ)→ χ

(ϕ ψ)→ χ

corresponds to the Π2-sentence

Π(ρ9) ∀x , y , z (x  y � z → ∃u : (u  u) ∧ (x  u) ∧ (u  y) � z)

which holds in (RO(X ),≺) iff X is a Stone space.

Using the finite axiomatization it can be shown that Con? proves Π(ρ9).
Therefore, we obtain as a corollary that S2IC is complete wrt Stone spaces.

Corollary

`S2IC ϕ iff RO(X ) � ϕ for every Stone space X .

This fact was proved in (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y.
Venema (2019)) using different methods.
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THANK YOU!
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