Regular Categories and Soft Sheaf Representations

Luca Reggio

University College London

joint work with Marco Abbadini

TACL 2021-2022

Coimbra, June 24, 2022

From representations of algebras as algebras of continuous functions, to sheaf representations. From representations of algebras as algebras of continuous functions, to sheaf representations.

Existence

- 1960s: rings and modules (Grothendieck, Dauns & Hofmann, Pierce, ...)
- ▶ 1970s: universal algebras (Comer, Cornish, Davey, Keimel, Wolf, ...)

 \rightsquigarrow Frames of commuting congruences of an algebra A yield sheaf representations of A.

From representations of algebras as algebras of continuous functions, to sheaf representations.

Existence

- 1960s: rings and modules (Grothendieck, Dauns & Hofmann, Pierce, ...)
- ▶ 1970s: universal algebras (Comer, Cornish, Davey, Keimel, Wolf, ...)

 \rightsquigarrow Frames of commuting congruences of an algebra A yield sheaf representations of A.

Characterisation (Gehrke & van Gool, JPAA 2018)

Sheaves as "continuous presheaves":

$$F: \Omega(X)^{\mathrm{op}} \to \mathsf{Set}$$

s.t. for all $S \subseteq \Omega(X)$ closed under binary \land , $F(\bigvee S) \cong \lim_{U \in S} F(U)$

Sheaves as "continuous presheaves":

$$F \colon \Omega(X)^{\mathrm{op}} \to \mathsf{Set}$$

s.t. for all $S \subseteq \Omega(X)$ closed under binary \land , $F(\bigvee S) \cong \lim_{U \in S} F(U)$

A sheaf $F: \Omega(X)^{\text{op}} \to \mathcal{V}$ is **soft** if every local section on a compact saturated subset of X can be extended to a global section.

Sheaves as "continuous presheaves":

 $F: \Omega(X)^{\mathrm{op}} \to \mathsf{Set}$

s.t. for all $S \subseteq \Omega(X)$ closed under binary \land , $F(\bigvee S) \cong \lim_{U \in S} F(U)$

A sheaf $F: \Omega(X)^{\text{op}} \to \mathcal{V}$ is **soft** if every local section on a compact saturated subset of X can be extended to a global section.

Theorem (Gehrke & van Gool, JPAA 2018)

Let X be a stably compact space and $A \neq \emptyset$ an algebra in a variety \mathcal{V} . There is a bijection between:

- ▶ (isomorphism classes of) soft sheaf representations of A over X;
- (∧, ∨)-preserving maps K(X)^{op} → Con(A) whose images consist of commuting congruences.

► For all $A \in C$, $(Quo A)^{op} \xrightarrow{ker} Equiv A$ is an order-embedding.

If ker is surjective, C is said to be Barr-exact .

► For all $A \in C$, $(Quo A)^{op} \xrightarrow{ker} Equiv A$ is an order-embedding.

If ker is surjective, C is said to be **Barr-exact**.

Examples of regular cat's: (possibly infinitary) varieties and quasivarieties, toposes, Stone, KHaus, KHaus^{op}, Nachbin^{op}, ...

► For all $A \in C$, $(Quo A)^{op} \xrightarrow{ker} Equiv A$ is an order-embedding.

If ker is surjective, C is said to be **Barr-exact**.

Examples of regular cat's: (possibly infinitary) varieties and quasivarieties, toposes, Stone, KHaus, KHaus^{op}, Nachbin^{op}, ...

For all $A \in C$, its **canonical representation** is

 $\gamma\colon \operatorname{\mathsf{RegEpi}}\nolimits A\to\operatorname{\mathsf{C}},\ \ (A\twoheadrightarrow B)\mapsto B.$

► For all $A \in C$, $(Quo A)^{op} \xrightarrow{ker} Equiv A$ is an order-embedding.

If ker is surjective, C is said to be **Barr-exact**.

Examples of regular cat's: (possibly infinitary) varieties and quasivarieties, toposes, Stone, KHaus, KHaus^{op}, Nachbin^{op}, ...

For all $A \in C$, its **canonical representation** is

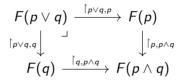
$$\gamma \colon \mathsf{RegEpi}\, A o \mathsf{C}, \ \ (A \twoheadrightarrow B) \mapsto B.$$

If P is any poset, this induces a functor $\begin{array}{c} [P^{\mathrm{op}}, \mathsf{RegEpi}\,A] \xrightarrow{\gamma_*} [P^{\mathrm{op}}, \mathsf{C}] \\ H \longmapsto \gamma \circ H. \end{array}$

A \mathcal{K} -sheaf on a complete lattice P is a functor $F: P^{\mathrm{op}} \to C$ such that:

A *K*-sheaf on a complete lattice *P* is a functor $F: P^{op} \to C$ such that: (K1) $F(\bot)$ is a terminal object of C.

(K2) For all $p, q \in P$, the following is a <u>pullback</u> square in C:



A *K*-sheaf on a complete lattice *P* is a functor $F: P^{op} \to C$ such that: (K1) $F(\bot)$ is a terminal object of C.

(K2) For all $p, q \in P$, the following is a pullback square in C:

$$egin{aligned} F(p ee q) & \stackrel{\lceil_{p ee q, p}}{\longrightarrow} F(p) \ & \downarrow^{\uparrow_{p, p \land q}} & \downarrow^{\downarrow_{p, p \land q}} \ F(q) & \stackrel{\ulcorner_{q, p \land q}}{\longrightarrow} F(p \land q) \end{aligned}$$

(K3) F preserves <u>directed colimits</u>, i.e. $F(\bigwedge D) \cong \operatorname{colim}_{p \in D} F(p)$ for all codirected subsets $D \subseteq P$.

A *K*-sheaf on a complete lattice *P* is a functor $F: P^{op} \to C$ such that:

(K1) $F(\perp)$ is a **subterminal** object of C.

(K2) For all $p, q \in P$, the following is a <u>pullback</u> square in C:

$$egin{aligned} F(p ee q) & \stackrel{ee_{p ee q, p}}{\longrightarrow} F(p) \ & \stackrel{ee}{\longrightarrow} & \downarrow^{ee_{p, p \wedge q}} \ & \downarrow^{ee_{p, p \wedge q}} F(q) & \stackrel{ee_{q, p \wedge q}}{\longrightarrow} F(p \wedge q) \end{aligned}$$

(K3) F preserves <u>directed colimits</u>, i.e. $F(\bigwedge D) \cong \operatorname{colim}_{p \in D} F(p)$ for all codirected subsets $D \subseteq P$.

A *K*-sheaf on a complete lattice *P* is a functor $F: P^{op} \to C$ such that: (K1) $F(\perp)$ is a <u>subterminal</u> object of C.

(K2) For all $p, q \in P$, the following is a pullback square in C:

$$egin{aligned} & F(p ee q) \xrightarrow{ee p ee q, p} F(p) \ & & & \downarrow^{ee p, p \land q} \ & & & \downarrow^{ee p, p \land q} \ & F(q) \xrightarrow{ee q, p \land q} F(p \land q) \end{aligned}$$

(K3) F preserves <u>directed colimits</u>, i.e. $F(\bigwedge D) \cong \operatorname{colim}_{p \in D} F(p)$ for all codirected subsets $D \subseteq P$.

A \mathcal{K} -sheaf $F: P^{\mathrm{op}} \to \mathsf{C}$ is **soft** if, for all $p \in P$, $F(\top) \to F(p)$ is a regular epi.

Theorem $\forall A \in C$, the functor $\gamma_* \colon [P^{\mathrm{op}}, \mathsf{RegEpi} A] \to [P^{\mathrm{op}}, \mathsf{C}]$ induces an isomorphism

 $\mathsf{M}\cong\operatorname{s-Sh}^{\mathcal{A}}_{\mathcal{K}}(\mathsf{P},\mathsf{C})$

where

M is the full subcategory of [P^{op}, RegEpi A] on the (∧, ∨)-preserving maps whose images consist of ker-commuting elements;

▶ s-Sh^A_{\mathcal{K}}(P, C) is the category of soft \mathcal{K} -sheaf representations of A over P.

Theorem $\forall A \in C$, the functor $\gamma_* \colon [P^{\mathrm{op}}, \mathsf{RegEpi} A] \to [P^{\mathrm{op}}, \mathsf{C}]$ induces an isomorphism

 $\mathsf{M}\cong\operatorname{s-Sh}^{\mathcal{A}}_{\mathcal{K}}(\mathsf{P},\mathsf{C})$

where

- ► M is the full subcategory of [P^{op}, RegEpi A] on the (∧, ∨)-preserving maps whose images consist of ker-commuting elements;
- ▶ s-Sh^A_{\mathcal{K}}(P, C) is the category of soft \mathcal{K} -sheaf representations of A over P.

Rmk: If C is Barr-exact and we take **poset reflections**, RegEpi A can be replaced with Equiv A. In that case, the ker-commuting regular epis correspond to the commuting equivalence relations.

Ω -sheaves

$$L^{\mathrm{op}} \xrightarrow{\lambda} \mathrm{Filt}(L) \xleftarrow{\kappa} \sigma \mathrm{Filt}(L)$$

where $\sigma \operatorname{Filt}(L)$ is the domain of **Scott-open filters** of L

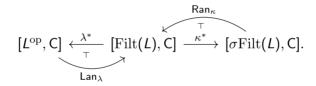
$$L^{\mathrm{op}} \xrightarrow{\lambda} \mathrm{Filt}(L) \xleftarrow{\kappa} \sigma \mathrm{Filt}(L)$$

$$[\mathcal{L}^{\mathrm{op}},\mathsf{C}] \xleftarrow{\lambda^*} [\mathrm{Filt}(\mathcal{L}),\mathsf{C}] \xrightarrow{\kappa^*} [\sigma\mathrm{Filt}(\mathcal{L}),\mathsf{C}].$$

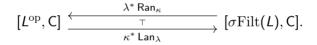
$$L^{\mathrm{op}} \xrightarrow{\lambda} \mathrm{Filt}(L) \xleftarrow{\kappa} \sigma \mathrm{Filt}(L)$$

$$[\mathcal{L}^{\mathrm{op}},\mathsf{C}] \xleftarrow[\tau]{}_{\mathsf{Lan}_{\lambda}} [\operatorname{Filt}(\mathcal{L}),\mathsf{C}] \xrightarrow[\kappa^*]{}_{\mathsf{K}^*} [\sigma\operatorname{Filt}(\mathcal{L}),\mathsf{C}].$$

$$L^{\mathrm{op}} \xrightarrow{\lambda} \mathrm{Filt}(L) \xleftarrow{\kappa} \sigma \mathrm{Filt}(L)$$



$$L^{\mathrm{op}} \xrightarrow{\lambda} \mathrm{Filt}(L) \xleftarrow{\kappa} \sigma \mathrm{Filt}(L)$$



$$L^{\mathrm{op}} \xrightarrow{\lambda} \mathrm{Filt}(L) \xleftarrow{\kappa} \sigma \mathrm{Filt}(L)$$

induces

$$[\mathcal{L}^{\mathrm{op}},\mathsf{C}] \xrightarrow[\kappa^* \operatorname{\mathsf{Lan}}_{\lambda}]{}^{\lambda^* \operatorname{\mathsf{Ran}}_{\kappa}} [\sigma \operatorname{Filt}(\mathcal{L}),\mathsf{C}].$$

Proposition

The previous adjunction restricts to an equivalence

$$\omega$$
-lim[$L^{\mathrm{op}}, \mathsf{C}$] $\simeq \omega$ -colim[σ Filt(L), C]

An Ω -sheaf on a complete lattice P is a functor $F: P^{\mathrm{op}} \to C$ such that:

- $(\Omega 1) = (K1)$
- $(\Omega 2) = (K2)$
- $(\Omega 3) = (K3)^{op} = F$ preserves <u>codirected limits</u>.

An Ω -sheaf on a complete lattice P is a functor $F: P^{\mathrm{op}} \to C$ such that: $(\Omega 1) = (K1)$ $(\Omega 2) = (K2)$

 $(\Omega 3) = (K3)^{op} = F$ preserves <u>codirected limits</u>.

Theorem

If L is a stably continuous lattice, (\blacktriangle) restricts to a fully faithful functor

 $\mathsf{Sh}_{\mathcal{K}}(\sigma\mathrm{Filt}(L)^{\mathrm{op}},\mathsf{C}) \hookrightarrow \mathsf{Sh}_{\Omega}(L,\mathsf{C}).$

This is an equivalence if directed colimits in C commute with finite limits .

An Ω -sheaf on a complete lattice P is a functor $F: P^{\mathrm{op}} \to C$ such that: $(\Omega 1) = (K1)$ $(\Omega 2) = (K2)$

 $(\Omega 3) = (K3)^{op} = F$ preserves <u>codirected limits</u>.

Theorem

If L is a stably continuous lattice, (\blacktriangle) restricts to a fully faithful functor

 $\mathsf{Sh}_{\mathcal{K}}(\sigma\mathrm{Filt}(L)^{\mathrm{op}},\mathsf{C}) \hookrightarrow \mathsf{Sh}_{\Omega}(L,\mathsf{C}).$

This is an equivalence if directed colimits in C commute with finite limits .

Rmk: If $L = \Omega(X)$ with X stably compact, then we can replace $\sigma \operatorname{Filt}(L)^{\operatorname{op}}$ with $\mathcal{K}(X)$ in the previous theorem.

$$\mathsf{M} \cong \operatorname{s-Sh}^{\mathcal{A}}_{\mathcal{K}}(\sigma \operatorname{Filt}(L)^{\operatorname{op}}, \mathsf{C}) \hookrightarrow \operatorname{s-Sh}^{\mathcal{A}}_{\Omega}(L, \mathsf{C}) \tag{(\Delta)}$$

$$\mathsf{M} \cong \operatorname{s-Sh}^{\mathcal{A}}_{\mathcal{K}}(\sigma \operatorname{Filt}(\mathcal{L})^{\operatorname{op}}, \mathsf{C}) \hookrightarrow \operatorname{s-Sh}^{\mathcal{A}}_{\Omega}(\mathcal{L}, \mathsf{C}) \tag{(\Delta)}$$

where an Ω -sheaf $F: L^{\text{op}} \to C$ is **soft** if, $\forall k \in \sigma \text{Filt}(L), F(\top) \twoheadrightarrow \text{colim}_{x \in k} F(x)$

$$\mathsf{M} \cong \operatorname{s-Sh}^{\mathcal{A}}_{\mathcal{K}}(\sigma \operatorname{Filt}(L)^{\operatorname{op}}, \mathsf{C}) \hookrightarrow \operatorname{s-Sh}^{\mathcal{A}}_{\Omega}(L, \mathsf{C}) \tag{(\Delta)}$$

and the composite is an equivalence if directed colimits in C commute with finite limits.

$$\mathsf{M} \cong \operatorname{s-Sh}^{\mathcal{A}}_{\mathcal{K}}(\sigma \operatorname{Filt}(L)^{\operatorname{op}}, \mathsf{C}) \hookrightarrow \operatorname{s-Sh}^{\mathcal{A}}_{\Omega}(L, \mathsf{C}) \tag{(\Delta)}$$

and the composite is an equivalence if directed colimits in C commute with finite limits.

Rmk (sheaves vs Ω -sheaves): For any space X, a presheaf $F: \Omega(X)^{\mathrm{op}} \to C$ is a sheaf iff it is an Ω -sheaf and $F(\emptyset)$ is terminal.

$$\mathsf{M} \cong \operatorname{s-Sh}^{\mathcal{A}}_{\mathcal{K}}(\sigma \operatorname{Filt}(L)^{\operatorname{op}}, \mathsf{C}) \hookrightarrow \operatorname{s-Sh}^{\mathcal{A}}_{\Omega}(L, \mathsf{C}) \tag{(\Delta)}$$

and the composite is an equivalence if directed colimits in C commute with finite limits.

Rmk (sheaves vs Ω -sheaves): For any space X, a presheaf $F: \Omega(X)^{\mathrm{op}} \to C$ is a sheaf iff it is an Ω -sheaf and $F(\emptyset)$ is terminal.

As finitary varieties are bicomplete Barr-exact categories in which directed colimits commute with finite limits, Gehrke & van Gool's result follows by taking **poset reflections** in (Δ).

"New" examples:

CABA

▶ ...

- ► Commutative unital C*-algebras
- ► Nachbin^{op}
- ▶ Profinite monoids, groups, *V*-algebras?

"New" examples:

CABA

▶ ...

- Commutative unital C*-algebras
- Nachbin^{op}
- Profinite monoids, groups, V-algebras?

Thank you for your attention!

