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A little context: linear orders on Girard quantales

v

Linear orders valued in 2 =[G, G].
» Linear orders valued in [C,, Cp].

» Linear orders valued in [[0,1], [0,1]].

» Linear orders valued in [L, L]?
» When [L, L] is a Girard/Frobenius quantale?
» Units are an obstacle to define linear orders valued on a Girard quantale Q.

» Morphisms of Girard quantales that do not preserve units.
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Quantales, definition

Definition. A quantale is a pair (Q, *) where Q is a complete lattice and * is a
semigroup operation that distributes over arbitrary suprema, in each variable:

Vo)« (V)= V xixy.

i€l Jjed iel,jed

for each pair of families { x; | i € '} and {y; | j € J}. If the semigroup
operation * has a unit, then we say that the quantale is unital.

Implications/residuals/adjoints:

Az:=\/{ylxsy<z}, yjz:=\/{x|x+y<z},

xxy <z iff y<x\z iff x<z/x.
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Frobenius quantales, via dualizing elements

Definition. Let (A, %) be a quantale. An element 0 € Q is dualizing if, for every
x in Q, we have

0/(x\0) = (0/x)\0 = x.
The element 0 is cyclic if for every x in Q we have
x\0=0/x.

A Frobenius quantale is a tuple (Q, *,0) where (Q, %) is a quantale and 0 € Q
is dualizing. If moreover 0 is cyclic, then (Q, *,0) is a Girard quantale.
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Frobenius quantales, via dualizing elements

Definition. Let (A, %) be a quantale. An element 0 € Q is dualizing if, for every
x in Q, we have

0/(x\0) = (0/x)\0 = x.
The element 0 is cyclic if for every x in Q we have
x\0=0/x.

A Frobenius quantale is a tuple (Q, *,0) where (Q, %) is a quantale and 0 € Q
is dualizing. If moreover 0 is cyclic, then (Q, *,0) is a Girard quantale.

First statement in the theory of Frobenius quantales:

Theorem. Any Frobenius quantale is unital.
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Frobenius quantales, via negations

Definition. A Frobenius quantale is a quantale (Q, *) equipped with a Serre
duality,? that is, a pair of inverse antitone maps l(f), (7)L 1Q — Q
satisfying
i 1
x\Ty=x"/y, for every x,y € Q. (1)

A Girard quantale is a Frobenius quantale with ~(—) = (=)= .

2From [Rump, 2021]
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Frobenius quantales, via negations

Definition. A Frobenius quantale is a quantale (Q, *) equipped with a Serre
duality,? that is, a pair of inverse antitone maps l(f), (7)L 1Q — Q
satisfying

\y =x"/y, for every x,y € Q. (1)
A Girard quantale is a Frobenius quantale with ~(—) = (=)= .

Remark. Equation (1), known in [Galatos et al., 2007] as the /aw of
contraposition, amounts to the associative law:

xxy <tz iff xt>yxz iff x<(yx2z),
and to the shift relations:

xxy<z iff tTzxx<lty iff yxzt <xt.
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Frobenius quantales, via negations

Definition. A Frobenius quantale is a quantale (Q, *) equipped with a Serre
duality,? that is, a pair of inverse antitone maps l(f), (7)L 1Q — Q
satisfying

\y =x"/y, for every x,y € Q. (1)
A Girard quantale is a Frobenius quantale with ~(—) = (=)= .

Remark. Equation (1), known in [Galatos et al., 2007] as the /aw of
contraposition, amounts to the associative law:

xxy <tz iff xt>yxz iff x<(yx2z),
and to the shift relations:

xxy<z iff tTzxx<lty iff yxzt <xt.

With this definition :
Lemma. A Frobenius quantale is unital if and only if it has a dualizing element.

2From [Rump, 2021]
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Are unitless Frobenius quantales useful/interesting?

» A trivial example of unitless Girard quantale:
the Chu construction (i.e. Twist product) of a unitless quantale.

» Other examples?

» Do they have a nice theory?
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Girard quantales from tight sup-preserving maps
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Girard quantales of sup-preserving maps

Let [L, L] be the complete lattice of sup-preserving endomaps of L.

Theorem [Kruml and Paseka, 2008, Egger and Kruml, 2010,

Santocanale, 2020b, Santocanale, 2020a].

The quantale ([L, L], o) has a dualizing element if and only if L is completely
distributive.
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Beyond complete distributivity: tight maps

Let L be a complete lattice. The Raney's transforms are

£V (x):= \/ f(t), fA(x) = /\ f(t),
xj(_t tj(_x

where f : L — L is an arbitrary map. Remark: (—=)" - (=)".

10/29



Beyond complete distributivity: tight maps

Let L be a complete lattice. The Raney's transforms are
Y (x) :z\/f(t)7 (%) :z/\f(t)7
xj(_t tj(_x
where f : L — L is an arbitrary map. Remark: (—=)" - (=)".

Definition. Cf. [Raney, 1960].
A sup-preserving map f : L —— L is tight if f*Y = f.
We let [L, L] be the set of tight endomaps of L.
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Beyond complete distributivity: tight maps
Let L be a complete lattice. The Raney's transforms are
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Definition. Cf. [Raney, 1960].
A sup-preserving map f : L —— L is tight if f*Y = f.
We let [L, L] be the set of tight endomaps of L.

Remark. Cf. [Wille, 1985, Gratzer and Wehrung, 1999]. We have

[L, L]e = (L Quinre L) =¢ (LPOL)*
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Beyond complete distributivity: tight maps
Let L be a complete lattice. The Raney's transforms are
F(x) =\ f(2), A (x) = N\ f(2),
gt tex
where f : L — L is an arbitrary map. Remark: (—=)" - (=)".

Definition. Cf. [Raney, 1960].
A sup-preserving map f : L —— L is tight if f*Y = f.
We let [L, L] be the set of tight endomaps of L.

Remark. Cf. [Wille, 1985, Gratzer and Wehrung, 1999]. We have
[L, L]e = (L Quinre L) =¢ (LPOL)*

Theorem. For any complete lattice L, the quantale ([L, L]:, o) is Girard with
negation given by

=) = p(f)".
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Girard quantales of sup-preserving maps

Let [L, L] be the complete lattice of sup-preserving endomaps of L.

Theorem (Egger, Kruml, Paseka, Santocanale).
The quantale ([L, L], o) has a dualizing element if and only if L is completely
distributive.

Theorem. The quantale ([L, L], o) is unital if and only if L is completely
distributive. In this case, the unit is the identity map and

[L, L], =[L, L],

that is, every sup-preserving endomap of L is tight.
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A bit of fun: tight endomaps of M,

Let M, be the generalized diamond lattice with n atoms (=coatoms).

Theorem. The following are equivalent:
1. f is tight,
2. the image of f has at most two atoms,

3. the image of f is (completely) distributive.
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Let M, be the generalized diamond lattice with n atoms (=coatoms).

Theorem. The following are equivalent:
1. f is tight,
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3. the image of f is (completely) distributive.

Remark. Above 3. = 1. always. Do we have 1. = 3. as well ? Special
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A bit of fun: tight endomaps of M,

Let M, be the generalized diamond lattice with n atoms (=coatoms).

Theorem. The following are equivalent:
1. f is tight,
2. the image of f has at most two atoms,

3. the image of f is (completely) distributive.

Remark. Above 3. = 1. always. Do we have 1. = 3. as well ? Special
properties of M, seem to be needed.

Proposition. There are
2 n 14 3,55
24+ 2n+2n" + 5 n(nfl):infn +§n +2n+2

tight endomaps of M,.
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Negation in [Mp, Mp]+

For x,y, z, w atoms of M, (with x # z and y # w), let

L, t=1,
y t=x
f;o—»y,z»—wv(t) = ’ ’
w, t=2z,

T, otherwise.

Then
(ﬁo—)y,z»—)w)* - fy»—)z,w»—)x .

(Not the complete history).
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Nuclei and phase quantales

14/29



Serre Galois connections (and the double negation construction)

Definition. A Galois connection on a quantale /,r (Q, ) is Serre if
» /or=roland
> x\/(x) = r(x)/y, for each x,y € Q.
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Serre Galois connections (and the double negation construction)

Definition. A Galois connection on a quantale /,r (Q, ) is Serre if
» /or=roland

> x\/(x) = r(x)/y, for each x,y € Q.

Proposition. Let /, r be a Serre Galois connection on (Q, ). Let
j:=lor=roland Q ={x€ Q|j(x)=x}. Then jisa nucleus and (Q;, *;)
is a Frobenius quantale with, as negations, the restrictions of / and r to Q.

Proposition. If (@;, *;) is a Frobenius quantale—with *(—), (—)>—then
[:="*(=)ojand r:= (=)o form a Serre Galois connection, and j = /o r.

Remark. All of this well-known with units and for Girard quantales. Here
without units and for Frobenius quantales.
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Frobenius phase quantales

Definition. A phase quantale is of the form (P(S);, ;) where (P(S),e) is the
free quantale over a semigroup (S, ) and j = /o r for a Serre Galois connection
I,r.
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Frobenius phase quantales

Definition. A phase quantale is of the form (P(S);, ;) where (P(S),e) is the
free quantale over a semigroup (S, ) and j = /o r for a Serre Galois connection
I,r.

Proposition. Serre Galois connections on P(S) bijectively correspond to binary
relations R such that:

1. for all x there exists Yy C S such that xRz iff zRy, for each y € Y,
2. condition 1. for the converse of R,

3. associative: x - yRz if and only if xRy - z, for each x,y,z € S.
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Frobenius phase quantales

Definition. A phase quantale is of the form (P(S);, ;) where (P(S),e) is the
free quantale over a semigroup (S, ) and j = /o r for a Serre Galois connection
I,r.

Proposition. Serre Galois connections on P(S) bijectively correspond to binary
relations R such that:

1. for all x there exists Yy C S such that xRz iff zRy, for each y € Y,
2. condition 1. for the converse of R,

3. associative: x - yRz if and only if xRy - z, for each x,y,z € S.

Theorem. Every Frobenius quantale is isomorphic to the phase quantale
(P(Q)j, ;) whose Serre Galois connection is induced by the binary relation

xRy iff x < J‘y.
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Unital Frobenius quantales from pregroups
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Frobenius quantales from pregroups

A pregroup is an ordered monoid (M, <, -) with inverse bijections
I,r: M —— M such that

1<r(x) - x, x-r(x) <1, 1<x-I(x), I(x)-x<1,
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Then, the binary relation R defined by
xRy iff x-y<1

is associative and satisfies condition 1. and 2.
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Frobenius quantales from pregroups

A pregroup is an ordered monoid (M, <, -) with inverse bijections
I,r: M —— M such that

1<r(x) - x, x-r(x) <1, 1<x-I(x), I(x)-x<1,

Then, the binary relation R defined by
xRy iff x-y<1

is associative and satisfies condition 1. and 2.

R is “representable”:

x-y<1l iff x<I(y) iff y<r(x).
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Plan

Unitless Girard quantales from C*-algebras.
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Max(A) quantales as phase quantales

Let A be an algebra coming with an associative symmetric bilinear map (—, —).
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Max(A) quantales as phase quantales

Let A be an algebra coming with an associative symmetric bilinear map (—, —).

Then
xRy iff (x,y)=0

is associative and yields a (self-adjoint) Serre Galois connection on P(A) and
(P(A)), ;) is a Girard quantale. j-closed subspaces are subvector spaces of A.
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Max(A) quantales as phase quantales

Let A be an algebra coming with an associative symmetric bilinear map (—, —).

Then
xRy iff (x,y)=0
is associative and yields a (self-adjoint) Serre Galois connection on P(A) and
(P(A)), ;) is a Girard quantale. j-closed subspaces are subvector spaces of A.
Suppose also that there is an involution (—)* : A —— A making (—, —) into
a sort of inner product:
(x,x") =0 implies x=0.

For example: A is a C*-algebra—in which case (P(A);, o;) is called Max(A).
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Max(A) quantales as phase quantales

Let A be an algebra coming with an associative symmetric bilinear map (—, —).

Then
xRy iff (x,y)=0

is associative and yields a (self-adjoint) Serre Galois connection on P(A) and
(P(A)), ;) is a Girard quantale. j-closed subspaces are subvector spaces of A.
Suppose also that there is an involution (—)* : A —— A making (—, —) into
a sort of inner product:

(x,x") =0 implies x=0.
For example: A is a C*-algebra—in which case (P(A);, o;) is called Max(A).

Theorem. The Girard quantale (P(A);, ;) has a unit if and only if the algebra
A has a unit.
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Max(A) construction for trace class operators

Until now, Max(A) considered only when A is unital.
In particular when A is the C*-algebra of matrices over a finite dimensional
vector space over C.
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Max(A) construction for trace class operators

Until now, Max(A) considered only when A is unital.
In particular when A is the C*-algebra of matrices over a finite dimensional
vector space over C.

Let H be an infinite dimensional Hilbert space. For a trace class operators
¢ : H—— H, we can define

tr(¢) = > (ple),e)u, (%) =tr(¢pow),

ecE

yielding an associative symmetric pairing and a Serre Galois connection.
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Max(A) construction for trace class operators

Until now, Max(A) considered only when A is unital.
In particular when A is the C*-algebra of matrices over a finite dimensional
vector space over C.

Let H be an infinite dimensional Hilbert space. For a trace class operators
¢ : H—— H, we can define

tr(¢) = > (ple),e)u, (%) =tr(¢pow),

ecE

yielding an associative symmetric pairing and a Serre Galois connection.

Let £*(H) be the ideal of trace class operators. It has no unit, and it is closed
under adjoints: ¢ € £'(H) implies ¢* € £L}(H). Thus:

Theorem. Max(£*(H)) is a unitless Frobenius quantale.
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No adding units
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No adding units

Definition. Let (Q, ) be a quantale. A element p is positive of
x < x*xpA px*x, foreach x € Q.
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No adding units

Definition. Let (Q, ) be a quantale. A element p is positive of
x < x*xpA px*x, foreach x € Q.

Lemma. A Frobenius quantale (Q, ) is unital if and only if A _, x\x is

positive.

XEQ
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No adding units

Definition. Let (Q, ) be a quantale. A element p is positive of
x < x*xpA px*x, foreach x € Q.

Lemma. A Frobenius quantale (Q, *) is unital if and only if A _,x\x is
positive.

Theorem. If a Frobenius quantale has no unit, then it cannot be embedded into
a unital Frobenius quantale while preserving negations.
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A closer look at [M,,, M,]

In [M,, M,]. elements of the form x\x = x*/x" are positive, since they
coincide with the same expression computed in [M,, M,].
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In [M,, M,]. elements of the form x\x = x*/x" are positive, since they
coincide with the same expression computed in [M,, M,].

Necessarily, positive elements are not closed under meets.

[Blount, 1999] argues that a residuated partially-ordered semigroup embeds
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x\x, x/x are positive.
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A closer look at [M,,, M,]

In [M,, M,]. elements of the form x\x = x*/x" are positive, since they
coincide with the same expression computed in [M,, M,].

Necessarily, positive elements are not closed under meets.

[Blount, 1999] argues that a residuated partially-ordered semigroup embeds
into a residuated partially-ordered monoid if and only if elements of the form
x\x, x/x are positive.

Counter-example ! [M,, M,]: shows that the same condition does not suffice
for embeddability into unital residuated lattices.
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Positive elements via duality

Necessarily, positive elements are not closed under meets in [M,, M,]:.

This can also be seen as follows.

Lemma. Sup-preserving closure operators on L dually correspond to complete
sublattices of L.
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Positive elements via duality
Necessarily, positive elements are not closed under meets in [M,, M,]:.

This can also be seen as follows.
Lemma. Sup-preserving closure operators on L dually correspond to complete

sublattices of L.
The join of distributive sublattices is not distributive:

Thus, for two tight closure operators ji, j>, we have in [M,, M,]:
A A f2 = idw,
and, within [M,, M,]x,

A Njp= (I'd/\/,”)Av =A.
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Obrigado !

Perguntas ?
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