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Plan

On the definition of Frobenius quantales

Girard quantales from tight sup-preserving maps

Nuclei and phase quantales

Unital Frobenius quantales from pregroups

Unitless Girard quantales from C∗-algebras.

No adding units
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A little context: linear orders on Girard quantales

I Linear orders valued in 2 = [C2,C2].

I Linear orders valued in [Cn,Cn].

I Linear orders valued in [ [0, 1] , [0, 1] ].

I Linear orders valued in [L, L]?

I When [L, L] is a Girard/Frobenius quantale?

I Units are an obstacle to define linear orders valued on a Girard quantale Q.

I Morphisms of Girard quantales that do not preserve units.

3/29



Quantales, definition

Definition. A quantale is a pair (Q, ∗) where Q is a complete lattice and ∗ is a
semigroup operation that distributes over arbitrary suprema, in each variable:

(
∨
i∈I

xi ) ∗ (
∨
j∈J

yj ) =
∨

i∈I ,j∈J

xi ∗ yj ,

for each pair of families { xi | i ∈ I } and { yj | j ∈ J }. If the semigroup
operation ∗ has a unit, then we say that the quantale is unital.

Implications/residuals/adjoints:

x\z :=
∨
{ y | x ∗ y ≤ z } , y/z :=

∨
{ x | x ∗ y ≤ z } ,

so

x ∗ y ≤ z iff y ≤ x\z iff x ≤ z/x .
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Frobenius quantales, via dualizing elements

Definition. Let (A, ∗) be a quantale. An element 0 ∈ Q is dualizing if, for every
x in Q, we have

0/(x\0) = (0/x)\0 = x .

The element 0 is cyclic if for every x in Q we have

x\0 = 0/x .

A Frobenius quantale is a tuple (Q, ∗, 0) where (Q, ∗) is a quantale and 0 ∈ Q
is dualizing. If moreover 0 is cyclic, then (Q, ∗, 0) is a Girard quantale.

First statement in the theory of Frobenius quantales:

Theorem. Any Frobenius quantale is unital.
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Frobenius quantales, via negations

Definition. A Frobenius quantale is a quantale (Q, ∗) equipped with a Serre
duality,2 that is, a pair of inverse antitone maps ⊥(−), (−)⊥ : Q −−−→ Q
satisfying

x\⊥y = x⊥/y , for every x , y ∈ Q. (1)

A Girard quantale is a Frobenius quantale with ⊥(−) = (−)⊥.

Remark. Equation (1), known in [Galatos et al., 2007] as the law of
contraposition, amounts to the associative law:

x ∗ y ≤ ⊥z iff x⊥ ≥ y ∗ z iff x ≤ ⊥(y ∗ z) ,

and to the shift relations:

x ∗ y ≤ z iff ⊥z ∗ x ≤ ⊥y iff y ∗ z⊥ ≤ x⊥ .

With this definition :
Lemma. A Frobenius quantale is unital if and only if it has a dualizing element.

2From [Rump, 2021]
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Are unitless Frobenius quantales useful/interesting?

I A trivial example of unitless Girard quantale:
the Chu construction (i.e. Twist product) of a unitless quantale.

I Other examples?

I Do they have a nice theory?
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Girard quantales of sup-preserving maps

Let [L, L] be the complete lattice of sup-preserving endomaps of L.

Theorem [Kruml and Paseka, 2008, Egger and Kruml, 2010,
Santocanale, 2020b, Santocanale, 2020a].
The quantale ([L, L], ◦) has a dualizing element if and only if L is completely
distributive.

Theorem. The quantale ([L, L]t, ◦) (of tight sup-preserving endomaps of L) is
unital if and only if L is completely distributive. In this case, the unit is the
identity map and every sup-preserving endomap of L is tight (that is,
[L, L] = [L, L]t).
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Beyond complete distributivity: tight maps

Let L be a complete lattice. The Raney’s transforms are

f ∨(x) :=
∨
x�t

f (t) , f ∧(x) :=
∧
t�x

f (t) ,

where f : L −−−→ L is an arbitrary map. Remark: (−)∨ a (−)∧.

Definition. Cf. [Raney, 1960].
A sup-preserving map f : L −−−→ L is tight if f ∧∨ = f .
We let [L, L]t be the set of tight endomaps of L.

Remark. Cf. [Wille, 1985, Grätzer and Wehrung, 1999]. We have

[L, L]t = (Lop ⊗Wille L)op =f (Lop�L)op

Theorem. For any complete lattice L, the quantale ([L, L]t, ◦) is Girard with
negation given by

f ⊥ := `(f ∧) = ρ(f )∨ .
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Girard quantales of sup-preserving maps
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A bit of fun: tight endomaps of Mn

Let Mn be the generalized diamond lattice with n atoms (=coatoms).

Theorem. The following are equivalent:

1. f is tight,

2. the image of f has at most two atoms,

3. the image of f is (completely) distributive.

Remark. Above 3. ⇒ 1. always. Do we have 1. ⇒ 3. as well ? Special
properties of Mn seem to be needed.

Proposition. There are

2 + 2n + 2n2 +

(
n

2

)
n(n − 1) =

1

2
n4 − n3 +

5

2
n2 + 2n + 2

tight endomaps of Mn.
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Negation in [Mn,Mn]t

For x , y , z ,w atoms of Mn (with x 6= z and y 6= w), let

fx 7→y,z 7→w (t) :=


⊥ , t = ⊥ ,
y , t = x ,

w , t = z ,

> , otherwise .

Then

(fx 7→y,z 7→w )∗ = fy 7→z,w 7→x .

(Not the complete history).
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Serre Galois connections (and the double negation construction)

Definition. A Galois connection on a quantale l , r (Q, ∗) is Serre if

I l ◦ r = r ◦ l and

I x\l(x) = r(x)/y , for each x , y ∈ Q.

Proposition. Let l , r be a Serre Galois connection on (Q, ∗). Let
j := l ◦ r = r ◦ l and Qj = { x ∈ Q | j(x) = x }. Then j is a nucleus and (Qj , ∗j)
is a Frobenius quantale with, as negations, the restrictions of l and r to Qj .

Proposition. If (Qj , ∗j) is a Frobenius quantale—with ⊥(−), (−)⊥—then
l := ⊥(−) ◦ j and r := ⊥(−) ◦ j form a Serre Galois connection, and j = l ◦ r .

Remark. All of this well-known with units and for Girard quantales. Here
without units and for Frobenius quantales.
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Frobenius phase quantales

Definition. A phase quantale is of the form (P(S)j , •j) where (P(S), •) is the
free quantale over a semigroup (S , ·) and j = l ◦ r for a Serre Galois connection
l , r .

Proposition. Serre Galois connections on P(S) bijectively correspond to binary
relations R such that:

1. for all x there exists Yx ⊆ S such that xRz iff zRy , for each y ∈ Yx ,

2. condition 1. for the converse of R,

3. associative: x · yRz if and only if xRy · z , for each x , y , z ∈ S .

Theorem. Every Frobenius quantale is isomorphic to the phase quantale
(P(Q)j , •j) whose Serre Galois connection is induced by the binary relation

xRy iff x ≤ ⊥y .
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Frobenius quantales from pregroups

A pregroup is an ordered monoid (M,≤, ·) with inverse bijections
l , r : M −−−→ M such that

1 ≤ r(x) · x , x · r(x) ≤ 1 , 1 ≤ x · l(x) , l(x) · x ≤ 1 ,

Then, the binary relation R defined by

xRy iff x · y ≤ 1

is associative and satisfies condition 1. and 2.

R is “representable”:

x · y ≤ 1 iff x ≤ l(y) iff y ≤ r(x) .
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Max(A) quantales as phase quantales

Let A be an algebra coming with an associative symmetric bilinear map 〈−,−〉.

Then

xRy iff 〈x , y〉 = 0

is associative and yields a (self-adjoint) Serre Galois connection on P(A) and
(P(A)j , •j) is a Girard quantale. j-closed subspaces are subvector spaces of A.

Suppose also that there is an involution (−)∗ : A −−−→ A making 〈−,−〉 into
a sort of inner product:

〈x , x∗〉 = 0 implies x = 0 .

For example: A is a C∗-algebra—in which case (P(A)j , •j) is called Max(A).

Theorem. The Girard quantale (P(A)j , •j) has a unit if and only if the algebra
A has a unit.
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Max(A) construction for trace class operators

Until now, Max(A) considered only when A is unital.
In particular when A is the C∗-algebra of matrices over a finite dimensional
vector space over C.

Let H be an infinite dimensional Hilbert space. For a trace class operators
φ : H −−−→ H, we can define

tr(φ) :=
∑
e∈E

〈φ(e), e〉H , 〈φ, ψ〉 := tr(φ ◦ ψ) ,

yielding an associative symmetric pairing and a Serre Galois connection.

Let L1(H) be the ideal of trace class operators. It has no unit, and it is closed
under adjoints: φ ∈ L1(H) implies φ∗ ∈ L1(H). Thus:

Theorem. Max(L1(H)) is a unitless Frobenius quantale.
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No adding units

Definition. Let (Q, ∗) be a quantale. A element p is positive of
x ≤ x ∗ p ∧ p ∗ x , for each x ∈ Q.

Lemma. A Frobenius quantale (Q, ∗) is unital if and only if
∧

x∈Q x\x is
positive.

Theorem. If a Frobenius quantale has no unit, then it cannot be embedded into
a unital Frobenius quantale while preserving negations.
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A closer look at [Mn,Mn]t

In [Mn,Mn]t elements of the form x\x = x⊥/x⊥ are positive, since they
coincide with the same expression computed in [Mn,Mn].

Necessarily, positive elements are not closed under meets.

[Blount, 1999] argues that a residuated partially-ordered semigroup embeds
into a residuated partially-ordered monoid if and only if elements of the form
x\x , x/x are positive.

Counter-example ! [Mn,Mn]t shows that the same condition does not suffice
for embeddability into unital residuated lattices.
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Positive elements via duality

Necessarily, positive elements are not closed under meets in [Mn,Mn]t.
This can also be seen as follows.
Lemma. Sup-preserving closure operators on L dually correspond to complete
sublattices of L.

The join of distributive sublattices is not distributive:

∨ =

Thus, for two tight closure operators j1, j2, we have in [Mn,Mn]t

j1 ∧ j2 = idMn

and, within [Mn,Mn]t,

j1 ∧ j2 = (idMn )∧∨ = ⊥ .
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Obrigado !

Perguntas ?
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