Unitless Frobenius quantales¹

Cédric de Lacroix and Luigi Santocanale

LIS, Aix-Marseille Université

TACL 2022 Coimbra, 22/06/2022

Plan

On the definition of Frobenius quantales

Girard quantales from tight sup-preserving maps

Nuclei and phase quantales

Unital Frobenius quantales from pregroups

Unitless Girard quantales from \mathbb{C}^* -algebras.

No adding units

A little context: linear orders on Girard quantales

- Linear orders valued in $\mathbf{2} = [C_2, C_2]$.
- Linear orders valued in $[C_n, C_n]$.
- Linear orders valued in [[0,1], [0,1]].
- Linear orders valued in [L, L]?
- When [L, L] is a Girard/Frobenius quantale?
- Units are an obstacle to define linear orders valued on a Girard quantale Q.
- Morphisms of Girard quantales that do not preserve units.

Quantales, definition

Definition. A *quantale* is a pair (Q, *) where Q is a complete lattice and * is a semigroup operation that distributes over arbitrary suprema, in each variable:

$$\left(\bigvee_{i\in I} x_i\right) * \left(\bigvee_{j\in J} y_j\right) = \bigvee_{i\in I, j\in J} x_i * y_j,$$

for each pair of families $\{x_i \mid i \in I\}$ and $\{y_j \mid j \in J\}$. If the semigroup operation * has a unit, then we say that the quantale is *unital*.

Implications/residuals/adjoints:

$$x \setminus z := \bigvee \{ y \mid x * y \le z \}, \qquad y/z := \bigvee \{ x \mid x * y \le z \},$$

so

$$x * y \le z$$
 iff $y \le x \setminus z$ iff $x \le z/x$.

Frobenius quantales, via dualizing elements

Definition. Let (A, *) be a quantale. An element $0 \in Q$ is *dualizing* if, for every x in Q, we have

$$0/(x\backslash 0) = (0/x)\backslash 0 = x.$$

The element 0 is cyclic if for every x in Q we have

$$x \setminus 0 = 0/x$$
.

A Frobenius quantale is a tuple (Q, *, 0) where (Q, *) is a quantale and $0 \in Q$ is dualizing. If moreover 0 is cyclic, then (Q, *, 0) is a *Girard quantale*.

Frobenius quantales, via dualizing elements

Definition. Let (A, *) be a quantale. An element $0 \in Q$ is *dualizing* if, for every x in Q, we have

$$0/(x\backslash 0) = (0/x)\backslash 0 = x.$$

The element 0 is cyclic if for every x in Q we have

$$x \setminus 0 = 0/x$$
.

A Frobenius quantale is a tuple (Q, *, 0) where (Q, *) is a quantale and $0 \in Q$ is dualizing. If moreover 0 is cyclic, then (Q, *, 0) is a *Girard quantale*.

First statement in the theory of Frobenius quantales:

Theorem. Any Frobenius quantale is unital.

Frobenius quantales, via negations

Definition. A *Frobenius quantale* is a quantale (Q, *) equipped with a Serre duality,² that is, a pair of inverse antitone maps $^{\perp}(-), (-)^{\perp} : Q \longrightarrow Q$ satisfying

$$x \setminus^{\perp} y = x^{\perp} / y$$
, for every $x, y \in Q$. (1)

A *Girard quantale* is a Frobenius quantale with $^{\perp}(-) = (-)^{\perp}$.

Frobenius quantales, via negations

Definition. A *Frobenius quantale* is a quantale (Q, *) equipped with a Serre duality,² that is, a pair of inverse antitone maps $^{\perp}(-), (-)^{\perp} : Q \longrightarrow Q$ satisfying

$$x \setminus^{\perp} y = x^{\perp} / y$$
, for every $x, y \in Q$. (1)

A Girard quantale is a Frobenius quantale with $^{\perp}(-) = (-)^{\perp}$.

Remark. Equation (1), known in [Galatos et al., 2007] as the *law of contraposition*, amounts to the *associative law*:

$$x * y \leq {}^{\perp}z$$
 iff $x^{\perp} \geq y * z$ iff $x \leq {}^{\perp}(y * z)$,

and to the shift relations:

$$x * y \le z$$
 iff $^{\perp}z * x \le ^{\perp}y$ iff $y * z^{\perp} \le x^{\perp}$.

²From [Rump, 2021]

Frobenius quantales, via negations

Definition. A Frobenius quantale is a quantale (Q, *) equipped with a Serre duality,² that is, a pair of inverse antitone maps $^{\perp}(-), (-)^{\perp} : Q \longrightarrow Q$ satisfying

$$x \setminus^{\perp} y = x^{\perp} / y$$
, for every $x, y \in Q$. (1)

A Girard quantale is a Frobenius quantale with $^{\perp}(-) = (-)^{\perp}$.

Remark. Equation (1), known in [Galatos et al., 2007] as the *law of contraposition*, amounts to the *associative law*:

$$x * y \leq {}^{\perp}z$$
 iff $x^{\perp} \geq y * z$ iff $x \leq {}^{\perp}(y * z)$,

and to the shift relations:

$$x * y \le z$$
 iff $^{\perp}z * x \le ^{\perp}y$ iff $y * z^{\perp} \le x^{\perp}$.

With this definition :

Lemma. A Frobenius quantale is unital if and only if it has a dualizing element.

²From [Rump, 2021]

Are unitless Frobenius quantales useful/interesting?

A trivial example of unitless Girard quantale: the Chu construction (i.e. Twist product) of a unitless quantale.

Other examples?

Do they have a nice theory?

Plan

On the definition of Frobenius quantales

Girard quantales from tight sup-preserving maps

Nuclei and phase quantales

Unital Frobenius quantales from pregroups

Unitless Girard quantales from \mathbb{C}^* -algebras.

No adding units

Let [L, L] be the complete lattice of sup-preserving endomaps of L.

Theorem [Kruml and Paseka, 2008, Egger and Kruml, 2010, Santocanale, 2020b, Santocanale, 2020a]. The quantale ($[L, L], \circ$) has a dualizing element if and only if L is completely distributive.

Let L be a complete lattice. The Raney's transforms are

$$f^{\vee}(x) := \bigvee_{x \nleq t} f(t), \qquad \qquad f^{\wedge}(x) := \bigwedge_{t \nleq x} f(t),$$

where $f: L \longrightarrow L$ is an arbitrary map. Remark: $(-)^{\vee} \dashv (-)^{\wedge}$.

Let L be a complete lattice. The Raney's transforms are

$$f^{\vee}(x) := \bigvee_{x \nleq t} f(t), \qquad \qquad f^{\wedge}(x) := \bigwedge_{t \nleq x} f(t),$$

where $f: L \longrightarrow L$ is an arbitrary map. Remark: $(-)^{\vee} \dashv (-)^{\wedge}$.

Definition. Cf. [Raney, 1960]. A sup-preserving map $f: L \longrightarrow L$ is tight if $f^{\wedge \vee} = f$. We let $[L, L]_t$ be the set of tight endomaps of L.

Let L be a complete lattice. The Raney's transforms are

$$f^{\vee}(x) := \bigvee_{x \nleq t} f(t), \qquad \qquad f^{\wedge}(x) := \bigwedge_{t \nleq x} f(t),$$

where $f: L \longrightarrow L$ is an arbitrary map. Remark: $(-)^{\vee} \dashv (-)^{\wedge}$.

Definition. Cf. [Raney, 1960]. A sup-preserving map $f: L \longrightarrow L$ is *tight* if $f^{\wedge \vee} = f$. We let $[L, L]_t$ be the set of tight endomaps of L.

Remark. Cf. [Wille, 1985, Grätzer and Wehrung, 1999]. We have

$$[L, L]_{t} = (L^{op} \otimes_{\text{Wille}} L)^{op} =_{f} (L^{op} \Box L)^{op}$$

Let L be a complete lattice. The Raney's transforms are

$$f^{\vee}(x) := \bigvee_{x \nleq t} f(t), \qquad \qquad f^{\wedge}(x) := \bigwedge_{t \nleq x} f(t),$$

where $f: L \longrightarrow L$ is an arbitrary map. Remark: $(-)^{\vee} \dashv (-)^{\wedge}$.

Definition. Cf. [Raney, 1960]. A sup-preserving map $f : L \longrightarrow L$ is *tight* if $f^{\wedge \vee} = f$. We let $[L, L]_t$ be the set of tight endomaps of L.

Remark. Cf. [Wille, 1985, Grätzer and Wehrung, 1999]. We have

$$[L, L]_{t} = (L^{op} \otimes_{\text{Wille}} L)^{op} =_{f} (L^{op} \Box L)^{op}$$

Theorem. For any complete lattice L, the quantale $([L, L]_t, \circ)$ is Girard with negation given by

$$f^{\perp} := \ell(f^{\wedge}) = \rho(f)^{\vee}.$$

Let [L, L] be the complete lattice of sup-preserving endomaps of L.

Theorem (Egger, Kruml, Paseka, Santocanale). The quantale $([L, L], \circ)$ has a dualizing element if and only if L is completely distributive.

Theorem. The quantale $([L, L]_t, \circ)$ is unital if and only if L is completely distributive. In this case, the unit is the identity map and

 $[L,L]_{\mathtt{t}}=[L,L]\,,$

that is, every sup-preserving endomap of L is tight.

A bit of fun: tight endomaps of M_n

Let M_n be the generalized diamond lattice with n atoms (=coatoms).

Theorem. The following are equivalent:

- 1. f is tight,
- 2. the image of f has at most two atoms,
- 3. the image of f is (completely) distributive.

A bit of fun: tight endomaps of M_n

Let M_n be the generalized diamond lattice with n atoms (=coatoms).

Theorem. The following are equivalent:

- 1. f is tight,
- 2. the image of f has at most two atoms,
- 3. the image of f is (completely) distributive.

Remark. Above 3. \Rightarrow 1. always. Do we have 1. \Rightarrow 3. as well ? Special properties of M_n seem to be needed.

A bit of fun: tight endomaps of M_n

Let M_n be the generalized diamond lattice with *n* atoms (=coatoms).

Theorem. The following are equivalent:

- 1. f is tight,
- 2. the image of f has at most two atoms,
- 3. the image of f is (completely) distributive.

Remark. Above 3. \Rightarrow 1. always. Do we have 1. \Rightarrow 3. as well ? Special properties of M_n seem to be needed.

Proposition. There are

$$2 + 2n + 2n^{2} + {n \choose 2}n(n-1) = \frac{1}{2}n^{4} - n^{3} + \frac{5}{2}n^{2} + 2n + 2$$

tight endomaps of M_n .

Negation in $[M_n, M_n]_t$

For x, y, z, w atoms of M_n (with $x \neq z$ and $y \neq w$), let

$$f_{x\mapsto y,z\mapsto w}(t) := \begin{cases} \bot, & t = \bot, \\ y, & t = x, \\ w, & t = z, \\ \top, & \text{otherwise}. \end{cases}$$

Then

$$(f_{x\mapsto y,z\mapsto w})^* = f_{y\mapsto z,w\mapsto x}.$$

(Not the complete history).

Plan

On the definition of Frobenius quantales

Girard quantales from tight sup-preserving maps

Nuclei and phase quantales

Unital Frobenius quantales from pregroups

Unitless Girard quantales from \mathbb{C}^* -algebras.

No adding units

Serre Galois connections (and the double negation construction)

Definition. A Galois connection on a quantale I, r (Q, *) is Serre if

$$\blacktriangleright \ I \circ r = r \circ I \text{ and}$$

▶
$$x \setminus I(x) = r(x)/y$$
, for each $x, y \in Q$.

Serre Galois connections (and the double negation construction)

Definition. A Galois connection on a quantale I, r (Q, *) is Serre if

- $\blacktriangleright \ I \circ r = r \circ I \text{ and}$
- ▶ $x \setminus I(x) = r(x)/y$, for each $x, y \in Q$.

Proposition. Let *I*, *r* be a Serre Galois connection on (Q, *). Let $j := l \circ r = r \circ l$ and $Q_j = \{x \in Q \mid j(x) = x\}$. Then *j* is a nucleus and $(Q_j, *_j)$ is a Frobenius quantale with, as negations, the restrictions of *l* and *r* to Q_j .

Proposition. If $(Q_j, *_j)$ is a Frobenius quantale—with $^{\perp}(-), (-)^{\perp}$ —then $l := ^{\perp}(-) \circ j$ and $r := ^{\perp}(-) \circ j$ form a Serre Galois connection, and $j = l \circ r$.

Remark. All of this well-known with units and for Girard quantales. Here without units and for Frobenius quantales.

Frobenius phase quantales

Definition. A phase quantale is of the form $(P(S)_j, \bullet_j)$ where $(P(S), \bullet)$ is the free quantale over a semigroup (S, \cdot) and $j = l \circ r$ for a Serre Galois connection l, r.

Frobenius phase quantales

Definition. A phase quantale is of the form $(P(S)_j, \bullet_j)$ where $(P(S), \bullet)$ is the free quantale over a semigroup (S, \cdot) and $j = l \circ r$ for a Serre Galois connection l, r.

Proposition. Serre Galois connections on P(S) bijectively correspond to binary relations R such that:

- 1. for all x there exists $Y_x \subseteq S$ such that xRz iff zRy, for each $y \in Y_x$,
- 2. condition 1. for the converse of R,
- 3. associative: $x \cdot yRz$ if and only if $xRy \cdot z$, for each $x, y, z \in S$.

Frobenius phase quantales

Definition. A phase quantale is of the form $(P(S)_j, \bullet_j)$ where $(P(S), \bullet)$ is the free quantale over a semigroup (S, \cdot) and $j = l \circ r$ for a Serre Galois connection l, r.

Proposition. Serre Galois connections on P(S) bijectively correspond to binary relations R such that:

- 1. for all x there exists $Y_x \subseteq S$ such that xRz iff zRy, for each $y \in Y_x$,
- 2. condition 1. for the converse of R,
- 3. associative: $x \cdot yRz$ if and only if $xRy \cdot z$, for each $x, y, z \in S$.

Theorem. Every Frobenius quantale is isomorphic to the phase quantale $(P(Q)_j, \bullet_j)$ whose Serre Galois connection is induced by the binary relation

$$xRy$$
 iff $x \leq {}^{\perp}y$.

Plan

On the definition of Frobenius quantales

Girard quantales from tight sup-preserving maps

Nuclei and phase quantales

Unital Frobenius quantales from pregroups

Unitless Girard quantales from \mathbb{C}^* -algebras.

No adding units

Frobenius quantales from pregroups

A pregroup is an ordered monoid (M, \leq, \cdot) with inverse bijections $I, r : M \longrightarrow M$ such that

 $1 \le r(x) \cdot x$, $x \cdot r(x) \le 1$, $1 \le x \cdot l(x)$, $l(x) \cdot x \le 1$,

Frobenius quantales from pregroups

A pregroup is an ordered monoid (M, \leq, \cdot) with inverse bijections $I, r : M \longrightarrow M$ such that

 $1 \leq r(x) \cdot x$, $x \cdot r(x) \leq 1$, $1 \leq x \cdot l(x)$, $l(x) \cdot x \leq 1$,

Then, the binary relation R defined by

xRy iff $x \cdot y \leq 1$

is associative and satisfies condition 1. and 2.

Frobenius quantales from pregroups

A pregroup is an ordered monoid (M, \leq, \cdot) with inverse bijections $I, r : M \longrightarrow M$ such that

 $1 \leq r(x) \cdot x$, $x \cdot r(x) \leq 1$, $1 \leq x \cdot l(x)$, $l(x) \cdot x \leq 1$,

Then, the binary relation R defined by

xRy iff $x \cdot y \leq 1$

is associative and satisfies condition 1. and 2.

R is "representable":

 $x \cdot y \leq 1$ iff $x \leq l(y)$ iff $y \leq r(x)$.

▲□ → ▲□ → ▲目 → ▲目 → ○ へ ()

Plan

On the definition of Frobenius quantales

Girard quantales from tight sup-preserving maps

Nuclei and phase quantales

Unital Frobenius quantales from pregroups

Unitless Girard quantales from \mathbb{C}^* -algebras.

No adding units

Let A be an algebra coming with an associative symmetric bilinear map $\langle -, - \rangle$.

Let A be an algebra coming with an associative symmetric bilinear map $\langle -, - \rangle$.

Then

$$xRy$$
 iff $\langle x, y \rangle = 0$

is associative and yields a (self-adjoint) Serre Galois connection on P(A) and $(P(A)_i, \bullet_i)$ is a Girard quantale. *j*-closed subspaces are subvector spaces of A.

Let A be an algebra coming with an associative symmetric bilinear map $\langle -, - \rangle$.

Then

$$xRy$$
 iff $\langle x, y \rangle = 0$

is associative and yields a (self-adjoint) Serre Galois connection on P(A) and $(P(A)_i, \bullet_i)$ is a Girard quantale. *j*-closed subspaces are subvector spaces of A.

Suppose also that there is an involution $(-)^* : A \longrightarrow A$ making $\langle -, - \rangle$ into a sort of inner product:

 $\langle x, x^* \rangle = 0$ implies x = 0.

For example: A is a \mathbb{C}^* -algebra—in which case $(P(A)_j, \bullet_j)$ is called Max(A).

Let A be an algebra coming with an associative symmetric bilinear map $\langle -, - \rangle$.

Then

$$xRy$$
 iff $\langle x, y \rangle = 0$

is associative and yields a (self-adjoint) Serre Galois connection on P(A) and $(P(A)_i, \bullet_i)$ is a Girard quantale. *j*-closed subspaces are subvector spaces of A.

Suppose also that there is an involution $(-)^* : A \longrightarrow A$ making $\langle -, - \rangle$ into a sort of inner product:

 $\langle x, x^* \rangle = 0$ implies x = 0.

For example: A is a \mathbb{C}^* -algebra—in which case $(P(A)_j, \bullet_j)$ is called Max(A).

Theorem. The Girard quantale $(P(A)_j, \bullet_j)$ has a unit if and only if the algebra A has a unit.

Max(A) construction for trace class operators

Until now, Max(A) considered only when A is unital. In particular when A is the \mathbb{C}^* -algebra of matrices over a finite dimensional vector space over \mathbb{C} .

Max(A) construction for trace class operators

Until now, Max(A) considered only when A is unital. In particular when A is the \mathbb{C}^* -algebra of matrices over a finite dimensional vector space over \mathbb{C} .

Let H be an infinite dimensional Hilbert space. For a trace class operators $\phi: H \longrightarrow H$, we can define

$$tr(\phi) := \sum_{e \in \mathcal{E}} \langle \phi(e), e \rangle_{H}, \qquad \langle \phi, \psi \rangle := tr(\phi \circ \psi),$$

yielding an associative symmetric pairing and a Serre Galois connection.

Max(A) construction for trace class operators

Until now, Max(A) considered only when A is unital. In particular when A is the \mathbb{C}^* -algebra of matrices over a finite dimensional vector space over \mathbb{C} .

Let H be an infinite dimensional Hilbert space. For a trace class operators $\phi: H \longrightarrow H$, we can define

$$tr(\phi) := \sum_{e \in \mathcal{E}} \langle \phi(e), e \rangle_{H}, \qquad \langle \phi, \psi \rangle := tr(\phi \circ \psi),$$

yielding an associative symmetric pairing and a Serre Galois connection.

Let $\mathcal{L}^1(H)$ be the ideal of trace class operators. It has no unit, and it is closed under adjoints: $\phi \in \mathcal{L}^1(H)$ implies $\phi^* \in \mathcal{L}^1(H)$. Thus:

Theorem. $Max(\mathcal{L}^1(H))$ is a unitless Frobenius quantale.

Plan

On the definition of Frobenius quantales

Girard quantales from tight sup-preserving maps

Nuclei and phase quantales

Unital Frobenius quantales from pregroups

Unitless Girard quantales from \mathbb{C}^* -algebras.

No adding units

No adding units

Definition. Let (Q, *) be a quantale. A element p is *positive* of $x \le x * p \land p * x$, for each $x \in Q$.

No adding units

Definition. Let (Q, *) be a quantale. A element *p* is *positive* of $x \le x * p \land p * x$, for each $x \in Q$.

Lemma. A Frobenius quantale (Q, *) is unital if and only if $\bigwedge_{x \in Q} x \setminus x$ is positive.

No adding units

Definition. Let (Q, *) be a quantale. A element p is positive of $x \le x * p \land p * x$, for each $x \in Q$.

Lemma. A Frobenius quantale (Q, *) is unital if and only if $\bigwedge_{x \in Q} x \setminus x$ is positive.

Theorem. If a Frobenius quantale has no unit, then it cannot be embedded into a unital Frobenius quantale while preserving negations.

In $[M_n, M_n]_t$ elements of the form $x \setminus x = x^{\perp}/x^{\perp}$ are positive, since they coincide with the same expression computed in $[M_n, M_n]$.

In $[M_n, M_n]_t$ elements of the form $x \setminus x = x^{\perp}/x^{\perp}$ are positive, since they coincide with the same expression computed in $[M_n, M_n]$.

Necessarily, positive elements are not closed under meets.

In $[M_n, M_n]_t$ elements of the form $x \setminus x = x^{\perp}/x^{\perp}$ are positive, since they coincide with the same expression computed in $[M_n, M_n]$.

Necessarily, positive elements are not closed under meets.

[Blount, 1999] argues that a residuated partially-ordered semigroup embeds into a residuated partially-ordered monoid if and only if elements of the form $x \setminus x$, x/x are positive.

In $[M_n, M_n]_t$ elements of the form $x \setminus x = x^{\perp}/x^{\perp}$ are positive, since they coincide with the same expression computed in $[M_n, M_n]$.

Necessarily, positive elements are not closed under meets.

[Blount, 1999] argues that a residuated partially-ordered semigroup embeds into a residuated partially-ordered monoid if and only if elements of the form $x \setminus x$, x/x are positive.

Counter-example ! $[M_n, M_n]_t$ shows that the same condition does not suffice for embeddability into unital residuated lattices.

Positive elements via duality

Necessarily, positive elements are not closed under meets in $[M_n, M_n]_t$. This can also be seen as follows.

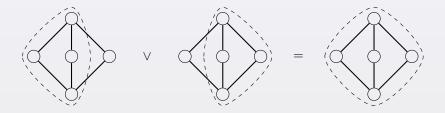
Lemma. Sup-preserving closure operators on L dually correspond to complete sublattices of L.

Positive elements via duality

Necessarily, positive elements are not closed under meets in $[M_n, M_n]_t$. This can also be seen as follows.

Lemma. Sup-preserving closure operators on L dually correspond to complete sublattices of L.

The join of distributive sublattices is not distributive:

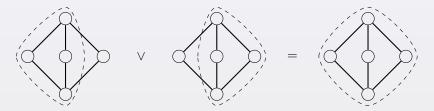


Positive elements via duality

Necessarily, positive elements are not closed under meets in $[M_n, M_n]_t$. This can also be seen as follows.

Lemma. Sup-preserving closure operators on L dually correspond to complete sublattices of L.

The join of distributive sublattices is not distributive:



Thus, for two tight closure operators j_1, j_2 , we have in $[M_n, M_n]_t$

$$j_1 \wedge j_2 = id_{M_n}$$

and, within $[M_n, M_n]_t$,

$$j_1 \wedge j_2 = (id_{M_n})^{\wedge \vee} = \bot.$$

Obrigado !

Perguntas ?

・ロト・白ト・ヨト・ヨー うへの

26/29

References I

Abramsky, S. and Heunen, C. (2012).

H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics.

In Mathematical foundations of information flow, volume 71 of Proc. Sympos. Appl. Math., pages 1-24. Amer. Math. Soc., Providence, RI.

Blount, K. (1999).

On the structure of residuated lattices. PhD thesis, Vanderbilt University.

Egger, J. M. and Kruml, D. (2010). Girard Couples of Quantales. Applied Categorical Structures, 18(2):123–133.

Galatos, N., Jipsen, P., Kowalski, T., and Ono, H. (2007). Residuated Lattices: An Algebraic Glimpse at Substructural Logics, volume 151 of Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam.

Grätzer, G. and Wehrung, F. (1999). A new lattice construction: the box product. J. Algebra, 221(1):315-344.

References II


```
Grothendieck, A. (1955).
    Produits tensoriels topologiques et espaces nucléaires.
    Mem. Amer. Math. Soc., 16:Chapter 1: 196 pp.; Chapter 2: 140.
Higgs, D. A. and Rowe, K. A. (1989).
   Nuclearity in the category of complete semilattices.
    J. Pure Appl. Algebra, 57(1):67–78.
Kruml, D. and Paseka, J. (2008).
   Algebraic and categorical aspects of quantales.
   volume 5 of Handbook of Algebra, pages 323-362. North-Holland.
Raney, G. N. (1960).
```

Tight Galois connections and complete distributivity. Trans. Amer. Math. Soc., 97:418-426.

Rump, W. (2021).

Frobenius Quantales, Serre Quantales and the Riemann-Roch Theorem. Studia Logica.

References III

Santocanale, L. (2020a).

Dualizing sup-preserving endomaps of a complete lattice. In Spivak, D. I. and Vicary, J., editors, Proceedings of the 3rd Annual

International Applied Category Theory Conference 2020, ACT 2020, Cambridge, USA, 6-10th July 2020, volume 333 of EPTCS, pages 335-346

Santocanale, L. (2020b).

The involutive guantaloid of completely distributive lattices. In Fahrenberg, U., Jipsen, P., and Winter, M., editors, Relational and Algebraic Methods in Computer Science - 18th International Conference, RAMiCS 2020, Palaiseau, France, April 8-11, 2020, Proceedings [postponed], volume 12062 of Lecture Notes in Computer Science, pages 286-301. Springer.

Wille, R. (1985).

Tensorial decomposition of concept lattices. Order, 2(1):81-95.