The coordinatization of the spectra of ℓ-groups and vector lattices

Luca Spada, University of Salerno
joint work with L. Carai and S. Lapenta
TACL, Coimbra
21 June 2022

Main ideas

- Study the dual side of ℓ-groups and Riesz spaces introduced in the previous talk.
- Compare the functors in the duality with $\operatorname{Spec}, \mathrm{PWL}_{\mathbb{Z}}$ and $\mathrm{PWL}_{\mathbb{R}}$.
- Application 1: a concrete representation of Spec into ultrapowers of \mathbb{R}.
- Application 2: an alternative proof of Panti's characterisation of prime ideals.

Recap from the previous talk

The Galois connection

- V indicates either the variety of abelian ℓ-groups or the variety of vector lattices.
- PWL indicates either the piecewise homogeneous functions with coefficients in \mathbb{R} or in \mathbb{Z}.
- \mathcal{U} always denotes some ultrapower of \mathbb{R} in V.

For κ a cardinal, \mathscr{F}_{κ} is the free algebra in V over κ generators.

The Galois connection

- V indicates either the variety of abelian ℓ-groups or the variety of vector lattices.
- PWL indicates either the piecewise homogeneous functions with coefficients in \mathbb{R} or in \mathbb{Z}.
- \mathcal{U} always denotes some ultrapower of \mathbb{R} in V.

For κ a cardinal, \mathscr{F}_{κ} is the free algebra in V over κ generators.
For cardinals $\kappa<\gamma$, the operators \mathbb{V} and \mathbb{I} are defined, for any $T \subseteq \mathscr{F}_{\kappa}$ and $S \subseteq \mathcal{U}^{\kappa}$,

$$
\begin{aligned}
{ }^{\kappa} \mathbb{V}_{\mathcal{U}}^{\gamma}(T) & :=\left\{x \in \mathcal{U}^{\kappa} \mid t(x)=0 \text { for all } t \in T\right\} \\
{ }^{\kappa} \mathbb{I}_{\mathcal{U}}^{\gamma}(S) & :=\left\{t \in \mathscr{F}_{\kappa} \mid t(x)=0 \text { for all } x \in S\right\} .
\end{aligned}
$$

They form a Galois connection that extends to dual adjunction.

The duality

For a cardinal γ, let \mathbb{V}_{γ} the full subcategory of \mathbb{V} that contains all κ-generated objects, with $\kappa<\gamma$.

The duality

For a cardinal γ, let \mathbb{V}_{γ} the full subcategory of \mathbb{V} that contains all κ-generated objects, with $\kappa<\gamma$.

Theorem

For any cardinal γ, there exists an ultrapower \mathcal{U} of \mathbb{R} such that the category \mathbb{V}_{γ} is dually equivalent to the category of $\mathbb{V} \mathbb{I}$-closed subsets of \mathcal{U}^{κ}.

The duality

For a cardinal γ, let \mathbb{V}_{γ} the full subcategory of \mathbb{V} that contains all κ-generated objects, with $\kappa<\gamma$.

Theorem

For any cardinal γ, there exists an ultrapower \mathcal{U} of \mathbb{R} such that the category \mathbb{V}_{γ} is dually equivalent to the category of $\mathbb{V} \mathbb{I}$-closed subsets of \mathcal{U}^{κ}.

Notice that for any $S \subseteq \mathcal{U}^{\kappa}$,

$$
\mathbb{V} \mathbb{I}(S)=S \text { if and only if } S=\mathbb{V}(T) \text { for some } T \subseteq \mathscr{F}_{k}
$$

The operator $\mathbb{V} \mathbb{I}$

$\mathbb{V} \mathbb{I}$ is (almost) topological

The operator $\mathbb{V} \mathbb{I}$ is a closure operator and commutes with binary
unions. However, it does not commute with empty unions, because every homogeneous polynomial vanishes on the origin O :
$\mathbb{V} \mathbb{I}(\emptyset)=\{O\}$.

$\mathbb{V} \mathbb{I}$ is (almost) topological

The operator $\mathbb{V} \mathbb{I}$ is a closure operator and commutes with binary
unions. However, it does not commute with empty unions, because every homogeneous polynomial vanishes on the origin O :
$\mathbb{V} \mathbb{I}(\emptyset)=\{O\}$.
So we need to consider $\mathcal{U}_{0}{ }^{\kappa}:=\mathcal{U}^{\kappa} \backslash\{O\}$ and modify \mathbb{V} accordingly: $\mathbb{V}_{o}(S):=\mathbb{V}(S) \backslash\{O\}$.

Some remarks

Remark

- The subsets $\mathbb{V}(\{t\})=\left\{x \in \mathcal{U}_{o}^{\kappa} \mid t(x)=0\right\}$ form a basis of closed sets for the topology.

Some remarks

Remark

- The subsets $\mathbb{V}(\{t\})=\left\{x \in \mathcal{U}_{o}^{\kappa} \mid t(x)=0\right\}$ form a basis of closed sets for the topology.
- Notice that the Zariski topology on \mathcal{U}_{o}^{κ} depends on whether we work with abelian ℓ-groups or vector lattices.

Some remarks

Remark

- The subsets $\mathbb{V}(\{t\})=\left\{x \in \mathcal{U}_{o}^{\kappa} \mid t(x)=0\right\}$ form a basis of closed sets for the topology.
- Notice that the Zariski topology on \mathcal{U}_{o}^{κ} depends on whether we work with abelian ℓ-groups or vector lattices.

The Zariski topology on \mathcal{U}_{o}^{κ} is not even T_{0}. Indeed, $t(x)=0$ implies $t(x+x)=t(x)+t(x)$. Whence x and $2 x$ cannot be separated by an open set.

Some remarks

Remark

- The subsets $\mathbb{V}(\{t\})=\left\{x \in \mathcal{U}_{o}^{\kappa} \mid t(x)=0\right\}$ form a basis of closed sets for the topology.
- Notice that the Zariski topology on \mathcal{U}_{o}^{κ} depends on whether we work with abelian ℓ-groups or vector lattices.

The Zariski topology on \mathcal{U}_{o}^{κ} is not even T_{0}. Indeed, $t(x)=0$ implies $t(x+x)=t(x)+t(x)$. Whence x and $2 x$ cannot be separated by an open set.
Therefore, we will consider the T_{0}-reflection of \mathcal{U}_{o}^{κ}. This is equivalently obtained by taking a quotient over the relation

$$
x \sim y \text { if and only if } \mathbb{V} \mathbb{I}(x)=\mathbb{V} \mathbb{I}(y)
$$

The topology on the quotient

Remark

The frames of open sets of \mathcal{U}_{o}^{κ} and $\mathcal{U}_{o}^{\kappa} / \sim$ are isomorphic.

The topology on the quotient

Remark

The frames of open sets of \mathcal{U}_{o}^{κ} and $\mathcal{U}_{o}^{\kappa} / \sim$ are isomorphic.

This is because all closed subsets of \mathcal{U}_{o}^{κ} are saturated w.r.t. the relation \sim.

Compact open

Lemma

The compact opens of \mathcal{U}_{o}^{κ} are exactly the complements of the basic closed sets $\mathbb{V}(t)$.

Compact open

Lemma

The compact opens of \mathcal{U}_{o}^{κ} are exactly the complements of the basic closed sets $\mathbb{V}(t)$.

One direction comes from the fact that t belongs to an arbitrary ideal J if and only if there are $t_{1}, \ldots, t_{n} \in J$ such that $t \leq t_{1}+\cdots+t_{n}$.

Compact open

Lemma

The compact opens of \mathcal{U}_{o}^{κ} are exactly the complements of the basic closed sets $\mathbb{V}(t)$.

One direction comes from the fact that t belongs to an arbitrary ideal J if and only if there are $t_{1}, \ldots, t_{n} \in J$ such that $t \leq t_{1}+\cdots+t_{n}$.

The other direction is a consequence of the fact that finitely generated ideals are principal in \mathbb{V}.

Irreducible

Recall that a closed subset of a topological space is said to be irreducible if it is not the union of two proper closed subsets.

Irreducible

Recall that a closed subset of a topological space is said to be irreducible if it is not the union of two proper closed subsets.

The nonempty irreducible Zariski-closed subsets of $\mathbb{R}^{n} \backslash\{O\}$ are the semilines starting from the origin $\left(\mathbb{V}_{\mathbb{R}}(I)\right.$ with I maximal).

Irreducible

Recall that a closed subset of a topological space is said to be irreducible if it is not the union of two proper closed subsets.

The nonempty irreducible Zariski-closed subsets of $\mathbb{R}^{n} \backslash\{O\}$ are the semilines starting from the origin $\left(\mathbb{V}_{\mathbb{R}}(I)\right.$ with I maximal).

Proposition

The nonempty irreducible closed subsets of \mathcal{U}_{o}^{κ} are exactly the closure of points.

Irreducible

Recall that a closed subset of a topological space is said to be irreducible if it is not the union of two proper closed subsets.

The nonempty irreducible Zariski-closed subsets of $\mathbb{R}^{n} \backslash\{O\}$ are the semilines starting from the origin $\left(\mathbb{V}_{\mathbb{R}}(I)\right.$ with I maximal).

Proposition

The nonempty irreducible closed subsets of \mathcal{U}_{o}^{κ} are exactly the closure of points.

Indeed, notice that being irreducible means to be join-prime in the lattice of closed sets. The latter is order-dual to the lattice of ideals, in which prime ideals are exactly the meet-prime elements.

The Zariski topology is generalized spectral

Proposition

$\mathcal{U}_{o}^{\kappa} / \sim$ is a generalized spectral space, i.e., T_{0}, sober, and with a basis of compact open sets stable under binary intersections.

The Zariski topology is generalized spectral

Proposition

$\mathcal{U}_{o}^{\kappa} / \sim$ is a generalized spectral space, i.e., T_{0}, sober, and with a basis of compact open sets stable under binary intersections.

It is T_{0} by construction, and by taking the quotient the compact open sets and the irreducible closed ones do not change.

A representation of Spec

$\operatorname{Spec}(A)$ is classically considered with its hull-kernel topology, where the basic closed subsets are $\{P \in \operatorname{Spec}(A) \mid a \in P\}$.

A representation of Spec

$\operatorname{Spec}(A)$ is classically considered with its hull-kernel topology, where the basic closed subsets are $\{P \in \operatorname{Spec}(A) \mid a \in P\}$.

Theorem

The map e: $\mathcal{U}_{o}^{\kappa} / \sim \rightarrow \operatorname{Spec}\left(\mathscr{F}_{\kappa}\right)$ that sends $x / \sim \mapsto \mathbb{I}(x)$ is a homeomorphism.

A representation of Spec

$\operatorname{Spec}(A)$ is classically considered with its hull-kernel topology, where the basic closed subsets are $\{P \in \operatorname{Spec}(A) \mid a \in P\}$.

Theorem

The map e: $\mathcal{U}_{o}^{\kappa} / \sim \rightarrow \operatorname{Spec}\left(\mathscr{F}_{\kappa}\right)$ that sends $x / \sim \mapsto \mathbb{I}(x)$ is a homeomorphism.

Corollary

For any κ-generated object in $A \in \mathbb{V}$ there exists an embedding of $\operatorname{Spec} A$ into \mathcal{U}_{o}^{κ} such that $A \cong{ }^{*} \operatorname{PWL}(\operatorname{Spec}(A))$.

A representation of Spec

$\operatorname{Spec}(A)$ is classically considered with its hull-kernel topology, where the basic closed subsets are $\{P \in \operatorname{Spec}(A) \mid a \in P\}$.

Theorem

The map e: $\mathcal{U}_{o}^{\kappa} / \sim \rightarrow \operatorname{Spec}\left(\mathscr{F}_{\kappa}\right)$ that sends $x / \sim \mapsto \mathbb{I}(x)$ is a homeomorphism.

Corollary

For any κ-generated object in $A \in \mathbb{V}$ there exists an embedding of $\operatorname{Spec} A$ into \mathcal{U}_{o}^{κ} such that $A \cong{ }^{*} \operatorname{PWL}(\operatorname{Spec}(A))$.

Corollary

A topological space is the spectrum of some $A \in \mathbb{V}$ iff it is a closed subspace of some $\mathcal{U}_{o}^{\kappa} / \sim$.

Irreducible closed

Non standard tools

If $\mathcal{U}=\prod \mathbb{R} / \mathcal{F}$ for some ultrafilter \mathcal{F}, every subset $X \subseteq \mathbb{R}^{n}$ can be associated with a subset ${ }^{*} X$ of \mathcal{U}^{n} defined as

$$
\left\{x \in \mathcal{U}^{n} \mid\left\{i \in I \mid \pi_{i}(x) \in X\right\} \in \mathcal{F}\right\}
$$

and called the enlargement of X. Similarly, every predicate $P \subseteq \mathbb{R}^{n}$ and function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be enlarged to ${ }^{*} P \subseteq \mathcal{U}^{n}$ and ${ }^{*} f: \mathcal{U}^{n} \rightarrow \mathcal{U}$.

Non standard tools

If $\mathcal{U}=\prod \mathbb{R} / \mathcal{F}$ for some ultrafilter \mathcal{F}, every subset $X \subseteq \mathbb{R}^{n}$ can be associated with a subset ${ }^{*} X$ of \mathcal{U}^{n} defined as

$$
\left\{x \in \mathcal{U}^{n} \mid\left\{i \in I \mid \pi_{i}(x) \in X\right\} \in \mathcal{F}\right\}
$$

and called the enlargement of X. Similarly, every predicate $P \subseteq \mathbb{R}^{n}$ and function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be enlarged to ${ }^{*} P \subseteq \mathcal{U}^{n}$ and ${ }^{*} f: \mathcal{U}^{n} \rightarrow \mathcal{U}$.

Transfer principle (Łoś Theorem)

Let φ be a first order formula and ${ }^{*} \varphi$ the formula obtained by replacing every predicate symbol P and every function symbol f with ${ }^{*} P$ and ${ }^{*} f$. Then φ is true in \mathbb{R} iff ${ }^{*} \varphi$ is true in \mathcal{U}.

Indices and irreducible closed

Orthogonal decomposition theorem (Goze 1995)

Any $x \in \mathcal{U}_{o}^{n}$ can be written in a unique way as

$$
x=\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}
$$

where

1. v_{1}, \ldots, v_{k} are orthonormal vectors of \mathbb{R}^{n},
2. $0<\alpha_{1}, \ldots, \alpha_{k} \in \mathcal{U}$, and
3. $\alpha_{i+1} / \alpha_{i}$ is infinitesimal for every $i<k$.

Cones and indices

Thus, each $x \in \mathcal{U}_{o}^{n}$ gets associated with a sequence $\mathbf{v}=\left(v_{1}, \ldots, v_{k}\right)$ of orthonormal vectors, which we call index.

For an index \mathbf{v}, let Hcone (\mathbf{v}) be the set of points of \mathcal{U}_{o}^{n} whose index is a truncation of \mathbf{v}.

Theorem (Carai, Lapenta, and S.)

In the Zariski topology of \mathcal{U}_{o}^{n} relative to vector lattices each irreducible closed of \mathcal{U}_{o}^{n} is $\operatorname{Hcone(v)~for~some~index~} \mathbf{v}$. In other words,

$$
\mathbb{V} \mathbb{I}(\{x\})=\operatorname{Hcone}(\mathbf{v}(x)) .
$$

Abelian l-groups and \mathbb{Z}-reduced indices

Definition

If $w \in \mathbb{R}^{n}$, let $\langle w\rangle$ be the smallest subspace containing w that admits a basis in \mathbb{Z}^{n}.

An index $\mathbf{v}=\left(v_{1}, \ldots, v_{k}\right)$ is \mathbb{Z}-reduced if $\left\langle v_{i}\right\rangle$ and $\left\langle v_{j}\right\rangle$ are orthogonal for each $i \neq j$.

Abelian l-groups and \mathbb{Z}-reduced indices

Definition

If $w \in \mathbb{R}^{n}$, let $\langle w\rangle$ be the smallest subspace containing w that admits a basis in \mathbb{Z}^{n}.

An index $\mathbf{v}=\left(v_{1}, \ldots, v_{k}\right)$ is \mathbb{Z}-reduced if $\left\langle v_{i}\right\rangle$ and $\left\langle v_{j}\right\rangle$ are orthogonal for each $i \neq j$.

Using a sort of Gram-Schmidt process, we can associate to each index \mathbf{v} a unique \mathbb{Z}-reduced index red(v).

Abelian l-groups and \mathbb{Z}-reduced indices

Theorem (Carai, Lapenta, and S.)

In the Zariski topology of \mathcal{U}_{o}^{n} relative to abelian ℓ-groups each irreducible closed of \mathcal{U}_{o}^{n} is of the form

$$
\bigcup\{\operatorname{Hcone}(\mathbf{w}) \mid \operatorname{red}(\mathbf{w})=\mathbf{v}\} .
$$

for some \mathbb{Z}-reduced index \mathbf{v}.

Indices and cones

If \mathbf{v} is an index, we say that a closed cone $C \subseteq \mathbb{R}^{n}$ is a v-cone if there exist real numbers $r_{2}, \ldots, r_{k}>0$ such that C is generated by $\left\{v_{1}, v_{1}+r_{2} v_{2}, \ldots, v_{1}+r_{2} v_{2}+\cdots+r_{k} v_{k}\right\}$.

Indices and cones

If \mathbf{v} is an index, we say that a closed cone $C \subseteq \mathbb{R}^{n}$ is a v-cone if there exist real numbers $r_{2}, \ldots, r_{k}>0$ such that C is generated by $\left\{v_{1}, v_{1}+r_{2} v_{2}, \ldots, v_{1}+r_{2} v_{2}+\cdots+r_{k} v_{k}\right\}$.

Proposition

Hcone(v) is the intersection of the enlargements of all the v-cones.
$\mathbf{v}=((1,0),(0,1))$.

$\mathbf{v}=((1,0),(0,1))$.

$$
\mathbf{v}=((1,0),(0,1)) .
$$

$$
\mathbf{v}=((1,0),(0,1)) .
$$

$$
\mathbf{v}=((1,0),(0,1)) .
$$

Primes and indices

Theorem (Carai, Lapenta, and S.)
For any $f \in \operatorname{PWL}\left(\mathbb{R}^{n}\right)$,
*f vanishes on Hcone(v) iff f vanishes on some v-cone.

Primes and indices

Theorem (Carai, Lapenta, and S.)

For any $f \in \operatorname{PWL}\left(\mathbb{R}^{n}\right)$,

* f vanishes on Hcone(v) iff f vanishes on some v-cone.

In addition, if $f \in \mathrm{PWL}_{\mathbb{Z}}\left(\mathbb{R}^{n}\right)$ and v is \mathbb{Z}-reduced, then
${ }^{*} f$ vanishes on $\bigcup\{$ Hcone $(\mathbf{w}) \mid \operatorname{red}(\mathbf{w})=\mathbf{v}\}$ iff f vanishes on some v-cone.

Primes and indices

Theorem (Carai, Lapenta, and S.)

For any $f \in \operatorname{PWL}\left(\mathbb{R}^{n}\right)$,
f vanishes on Hcone(v) iff f vanishes on some v-cone. In addition, if $f \in \mathrm{PWL}_{\mathbb{Z}}\left(\mathbb{R}^{n}\right)$ and v is \mathbb{Z}-reduced, then ${ }^{} f$ vanishes on $\bigcup\{$ Hcone $(\mathbf{w}) \mid \operatorname{red}(\mathbf{w})=\mathbf{v}\}$ iff f vanishes on some v-cone.

As a corollary, we obtain the description of prime ℓ-ideals in finitely generated vector lattices and abelian ℓ-groups due to Panti.

Theorem (Panti 1999)

Each prime ideal of \mathscr{F}_{n} is of the form
$\left\{f \in \operatorname{PWL}\left(\mathbb{R}^{n}\right) \mid f\right.$ vanishes on a \mathbf{v}-cone $\}$ for a uniquely determined (reduced) index \mathbf{v}.

Thank You!

