The coordinatization of the spectra of ℓ -groups and vector lattices

Luca Spada, University of Salerno joint work with L. Carai and S. Lapenta TACL, Coimbra 21 June 2022

- Study the dual side of *l*-groups and Riesz spaces introduced in the previous talk.
- Compare the functors in the duality with Spec, $\mathsf{PWL}_\mathbb{Z}$ and $\mathsf{PWL}_\mathbb{R}.$
- Application 1: a concrete representation of Spec into ultrapowers of ℝ.
- Application 2: an alternative proof of Panti's characterisation of prime ideals.

Recap from the previous talk

The Galois connection

- *V* indicates either the variety of abelian *l*-groups or the variety of vector lattices.
- PWL indicates either the piecewise homogeneous functions with coefficients in ℝ or in ℤ.
- \mathcal{U} always denotes some ultrapower of \mathbb{R} in V.

For κ a cardinal, \mathscr{F}_{κ} is the free algebra in V over κ generators.

The Galois connection

- *V* indicates either the variety of abelian *l*-groups or the variety of vector lattices.
- PWL indicates either the piecewise homogeneous functions with coefficients in ℝ or in ℤ.
- \mathcal{U} always denotes some ultrapower of \mathbb{R} in V.

For κ a cardinal, \mathscr{F}_{κ} is the free algebra in V over κ generators. For cardinals $\kappa < \gamma$, the operators \mathbb{V} and \mathbb{I} are defined, for any $T \subseteq \mathscr{F}_{\kappa}$ and $S \subseteq \mathcal{U}^{\kappa}$,

$${}^{\kappa} \mathbb{V}_{\mathcal{U}}^{\gamma}(T) \coloneqq \{ x \in \mathcal{U}^{\kappa} \mid t(x) = 0 \text{ for all } t \in T \}$$
$${}^{\kappa} \mathbb{I}_{\mathcal{U}}^{\gamma}(S) \coloneqq \{ t \in \mathscr{F}_{\kappa} \mid t(x) = 0 \text{ for all } x \in S \}.$$

They form a Galois connection that extends to dual adjunction.

For a cardinal γ , let \mathbb{V}_{γ} the full subcategory of \mathbb{V} that contains all κ -generated objects, with $\kappa < \gamma$.

For a cardinal γ , let \mathbb{V}_{γ} the full subcategory of \mathbb{V} that contains all κ -generated objects, with $\kappa < \gamma$.

Theorem

For any cardinal γ , there exists an ultrapower \mathcal{U} of \mathbb{R} such that the category \mathbb{V}_{γ} is dually equivalent to the category of $\mathbb{V}\mathbb{I}$ -closed subsets of \mathcal{U}^{κ} . For a cardinal γ , let \mathbb{V}_{γ} the full subcategory of \mathbb{V} that contains all κ -generated objects, with $\kappa < \gamma$.

Theorem

For any cardinal γ , there exists an ultrapower \mathcal{U} of \mathbb{R} such that the category \mathbb{V}_{γ} is dually equivalent to the category of $\mathbb{V}I$ -closed subsets of \mathcal{U}^{κ} .

Notice that for any $S \subseteq \mathcal{U}^{\kappa}$,

 $\mathbb{VI}(S) = S$ if and only if $S = \mathbb{V}(T)$ for some $T \subseteq \mathscr{F}_{\kappa}$

The operator $\mathbb{V}\,\mathbb{I}$

The operator \mathbb{VI} is a closure operator and commutes with binary unions. However, it does not commute with empty unions, because every homogeneous polynomial vanishes on the origin O: $\mathbb{VI}(\emptyset) = \{O\}$. The operator \mathbb{VI} is a closure operator and commutes with binary unions. However, it does not commute with empty unions, because every homogeneous polynomial vanishes on the origin *O*: $\mathbb{VI}(\emptyset) = \{O\}$.

So we need to consider $\mathcal{U}_{\circ}^{\kappa} := \mathcal{U}^{\kappa} \setminus \{O\}$ and modify \mathbb{V} accordingly: $\mathbb{V}_{\circ}(S) := \mathbb{V}(S) \setminus \{O\}$.

Remark

The subsets V({t}) = {x ∈ U_o^κ | t(x) = 0} form a basis of closed sets for the topology.

Remark

- The subsets V({t}) = {x ∈ U_o^κ | t(x) = 0} form a basis of closed sets for the topology.
- Notice that the Zariski topology on U^κ_o depends on whether we work with abelian ℓ-groups or vector lattices.

Remark

- The subsets V({t}) = {x ∈ U_o^κ | t(x) = 0} form a basis of closed sets for the topology.
- Notice that the Zariski topology on \mathcal{U}_o^{κ} depends on whether we work with abelian ℓ -groups or vector lattices.

The Zariski topology on \mathcal{U}_{o}^{κ} is not even T_{0} . Indeed, t(x) = 0 implies t(x + x) = t(x) + t(x). Whence x and 2x cannot be separated by an open set.

Remark

- The subsets V({t}) = {x ∈ U_o^κ | t(x) = 0} form a basis of closed sets for the topology.
- Notice that the Zariski topology on \mathcal{U}_o^{κ} depends on whether we work with abelian ℓ -groups or vector lattices.

The Zariski topology on \mathcal{U}_{o}^{κ} is not even T_{0} . Indeed, t(x) = 0 implies t(x + x) = t(x) + t(x). Whence x and 2x cannot be separated by an open set.

Therefore, we will consider the T_0 -reflection of \mathcal{U}_o^{κ} . This is equivalently obtained by taking a quotient over the relation

 $x \sim y$ if and only if $\mathbb{V}\mathbb{I}(x) = \mathbb{V}\mathbb{I}(y)$.

Remark

The frames of open sets of \mathcal{U}_{o}^{κ} and $\mathcal{U}_{o}^{\kappa}/\sim$ are isomorphic.

Remark

The frames of open sets of \mathcal{U}_{o}^{κ} and $\mathcal{U}_{o}^{\kappa}/\sim$ are isomorphic.

This is because all closed subsets of \mathcal{U}_o^κ are saturated w.r.t. the relation \sim .

Lemma

The compact opens of \mathcal{U}_{o}^{κ} are exactly the complements of the basic closed sets $\mathbb{V}(t)$.

Lemma

The compact opens of \mathcal{U}_{o}^{κ} are exactly the complements of the basic closed sets $\mathbb{V}(t)$.

One direction comes from the fact that t belongs to an arbitrary ideal J if and only if there are $t_1, \ldots, t_n \in J$ such that $t \leq t_1 + \cdots + t_n$.

Lemma

The compact opens of \mathcal{U}_{o}^{κ} are exactly the complements of the basic closed sets $\mathbb{V}(t)$.

One direction comes from the fact that t belongs to an arbitrary ideal J if and only if there are $t_1, \ldots, t_n \in J$ such that $t \leq t_1 + \cdots + t_n$.

The other direction is a consequence of the fact that finitely generated ideals are principal in \mathbb{V} .

The nonempty irreducible Zariski-closed subsets of $\mathbb{R}^n \setminus \{O\}$ are the semilines starting from the origin ($\mathbb{V}_{\mathbb{R}}(I)$ with I maximal).

The nonempty irreducible Zariski-closed subsets of $\mathbb{R}^n \setminus \{O\}$ are the semilines starting from the origin ($\mathbb{V}_{\mathbb{R}}(I)$ with I maximal).

Proposition

The nonempty irreducible closed subsets of \mathcal{U}_o^{κ} are exactly the closure of points.

The nonempty irreducible Zariski-closed subsets of $\mathbb{R}^n \setminus \{O\}$ are the semilines starting from the origin ($\mathbb{V}_{\mathbb{R}}(I)$ with I maximal).

Proposition

The nonempty irreducible closed subsets of \mathcal{U}_o^{κ} are exactly the closure of points.

Indeed, notice that being irreducible means to be join-prime in the lattice of closed sets. The latter is order-dual to the lattice of ideals, in which prime ideals are exactly the meet-prime elements.

Proposition

 U_o^{κ}/\sim is a generalized spectral space, i.e., T_0 , sober, and with a basis of compact open sets stable under binary intersections.

Proposition

 U_o^{κ}/\sim is a generalized spectral space, i.e., T_0 , sober, and with a basis of compact open sets stable under binary intersections.

It is T_0 by construction, and by taking the quotient the compact open sets and the irreducible closed ones do not change.

Theorem

The map $e: \mathcal{U}_o^{\kappa}/\sim \to \operatorname{Spec}(\mathscr{F}_{\kappa})$ that sends $x/\sim \mapsto \mathbb{I}(x)$ is a homeomorphism.

Theorem

The map $e: \mathcal{U}_o^{\kappa}/\sim \to \operatorname{Spec}(\mathscr{F}_{\kappa})$ that sends $x/\sim \mapsto \mathbb{I}(x)$ is a homeomorphism.

Corollary

For any κ -generated object in $A \in \mathbb{V}$ there exists an embedding of Spec A into \mathcal{U}_o^{κ} such that $A \cong {}^*\mathsf{PWL}(\mathsf{Spec}(A))$.

Theorem

The map $e: \mathcal{U}_o^{\kappa}/\sim \to \operatorname{Spec}(\mathscr{F}_{\kappa})$ that sends $x/\sim \mapsto \mathbb{I}(x)$ is a homeomorphism.

Corollary

For any κ -generated object in $A \in \mathbb{V}$ there exists an embedding of Spec A into \mathcal{U}_o^{κ} such that $A \cong {}^*PWL(Spec(A))$.

Corollary

A topological space is the spectrum of some $A \in \mathbb{V}$ iff it is a closed subspace of some $\mathcal{U}_o^{\kappa}/\sim$.

Irreducible closed

If $\mathcal{U} = \prod \mathbb{R}/\mathcal{F}$ for some ultrafilter \mathcal{F} , every subset $X \subseteq \mathbb{R}^n$ can be associated with a subset *X of \mathcal{U}^n defined as

$$\{x \in \mathcal{U}^n \mid \{i \in I \mid \pi_i(x) \in X\} \in \mathcal{F}\}$$

and called the enlargement of X. Similarly, every predicate $P \subseteq \mathbb{R}^n$ and function $f : \mathbb{R}^n \to \mathbb{R}$ can be enlarged to $*P \subseteq \mathcal{U}^n$ and $*f : \mathcal{U}^n \to \mathcal{U}$. If $\mathcal{U} = \prod \mathbb{R}/\mathcal{F}$ for some ultrafilter \mathcal{F} , every subset $X \subseteq \mathbb{R}^n$ can be associated with a subset *X of \mathcal{U}^n defined as

$$\{x \in \mathcal{U}^n \mid \{i \in I \mid \pi_i(x) \in X\} \in \mathcal{F}\}$$

and called the enlargement of X. Similarly, every predicate $P \subseteq \mathbb{R}^n$ and function $f : \mathbb{R}^n \to \mathbb{R}$ can be enlarged to $*P \subseteq \mathcal{U}^n$ and $*f : \mathcal{U}^n \to \mathcal{U}$.

Transfer principle (Łoś Theorem)

Let φ be a first order formula and ${}^*\varphi$ the formula obtained by replacing every predicate symbol P and every function symbol f with *P and *f . Then φ is true in \mathbb{R} iff ${}^*\varphi$ is true in \mathcal{U} .

Orthogonal decomposition theorem (Goze 1995)

Any $x \in \mathcal{U}_o^n$ can be written in a unique way as

 $x = \alpha_1 v_1 + \dots + \alpha_k v_k$

where

Thus, each $x \in U_o^n$ gets associated with a sequence $\mathbf{v} = (v_1, \dots, v_k)$ of orthonormal vectors, which we call index.

For an index \mathbf{v} , let $Hcone(\mathbf{v})$ be the set of points of \mathcal{U}_o^n whose index is a truncation of \mathbf{v} .

Theorem (Carai, Lapenta, and S.)

In the Zariski topology of \mathcal{U}_{o}^{n} relative to vector lattices each irreducible closed of \mathcal{U}_{o}^{n} is $Hcone(\mathbf{v})$ for some index \mathbf{v} . In other words,

 $\mathbb{VI}(\{x\}) = \mathsf{Hcone}(\mathbf{v}(x)).$

Definition

If $w \in \mathbb{R}^n$, let $\langle w \rangle$ be the smallest subspace containing w that admits a basis in \mathbb{Z}^n .

An index $\mathbf{v} = (v_1, \dots, v_k)$ is \mathbb{Z} -reduced if $\langle v_i \rangle$ and $\langle v_j \rangle$ are orthogonal for each $i \neq j$.

Definition

If $w \in \mathbb{R}^n$, let $\langle w \rangle$ be the smallest subspace containing w that admits a basis in \mathbb{Z}^n .

An index $\mathbf{v} = (v_1, \dots, v_k)$ is \mathbb{Z} -reduced if $\langle v_i \rangle$ and $\langle v_j \rangle$ are orthogonal for each $i \neq j$.

Using a sort of Gram-Schmidt process, we can associate to each index \mathbf{v} a unique \mathbb{Z} -reduced index $red(\mathbf{v})$.

In the Zariski topology of \mathcal{U}_o^n relative to abelian ℓ -groups each irreducible closed of \mathcal{U}_o^n is of the form

$$\bigcup \{\mathsf{Hcone}(\mathbf{w}) \mid \mathsf{red}(\mathbf{w}) = \mathbf{v} \}.$$

for some \mathbb{Z} -reduced index \mathbf{v} .

If **v** is an index, we say that a closed cone $C \subseteq \mathbb{R}^n$ is a **v**-cone if there exist real numbers $r_2, \ldots, r_k > 0$ such that C is generated by $\{v_1, v_1 + r_2v_2, \ldots, v_1 + r_2v_2 + \cdots + r_kv_k\}.$ If **v** is an index, we say that a closed cone $C \subseteq \mathbb{R}^n$ is a **v**-cone if there exist real numbers $r_2, \ldots, r_k > 0$ such that C is generated by $\{v_1, v_1 + r_2v_2, \ldots, v_1 + r_2v_2 + \cdots + r_kv_k\}.$

Proposition

 $\mathsf{Hcone}(\mathbf{v})$ is the intersection of the enlargements of all the $\mathbf{v}\text{-}\mathsf{cones}.$

$$\mathbf{v} = ((1, 0), (0, 1)).$$

17 / 19

$$\mathbf{v} = ((1, 0), (0, 1)).$$

For any $f \in PWL(\mathbb{R}^n)$,

*f vanishes on $Hcone(\mathbf{v})$ iff f vanishes on some \mathbf{v} -cone.

For any $f \in \mathsf{PWL}(\mathbb{R}^n)$,

*f vanishes on $Hcone(\mathbf{v})$ iff f vanishes on some \mathbf{v} -cone.

In addition, if $f \in \mathsf{PWL}_{\mathbb{Z}}(\mathbb{R}^n)$ and v is \mathbb{Z} -reduced, then

f* vanishes on \bigcup {Hcone(w**) | red(**w**) = **v**} iff *f* vanishes on some **v**-cone.

For any $f \in PWL(\mathbb{R}^n)$,

* f vanishes on Hcone(**v**) iff f vanishes on some **v**-cone.

In addition, if $f \in \mathsf{PWL}_{\mathbb{Z}}(\mathbb{R}^n)$ and v is \mathbb{Z} -reduced, then

f* vanishes on \bigcup {Hcone(w**) | red(**w**) = **v**} iff *f* vanishes on some **v**-cone.

As a corollary, we obtain the description of prime ℓ -ideals in finitely generated vector lattices and abelian ℓ -groups due to Panti.

Theorem (Panti 1999)

Each prime ideal of \mathscr{F}_n is of the form $\{f \in \mathsf{PWL}(\mathbb{R}^n) \mid f \text{ vanishes on a } \mathbf{v}\text{-cone}\}\$ for a uniquely determined (reduced) index \mathbf{v} .

Thank You!