Two-layered Belnapian logics for uncertainty

Marta Bílková ${ }^{1}$
${ }^{1}$ Czech Academy of Sciences, Institute of Computer Science

TACL, June 212022
(Joint work with S. Frittella, D. Kozhemiachenko, O. Majer, and S. Nazari)

Motivation: Belief based on information

- It is natural to view belief as based on evidence/information
- Potential incompleteness, uncertainty, and contradictoriness of information needs to be dealt with adequately
- Separately, these characteristics has been taken into account by various appropriate logical formalisms and (classical) probability theory
- The first two are often accommodated within one formalism (e.g. imprecise probability), the second two less so.
- Conflict or contradictoriness of information is rather to be resolved than to be reasoned with.

Two-dimensionality of information

Addressing incompleteness and contradictoriness of information in one framework:

- separating positive and negative information, which are not considered complementary and can overlap
- semantically, distinguishing support for from opposition to a statement (or qualifying/quantifying evidence for and evidence against a statement being the case separately)
- explicit in the double-valuation semantics of Belnap-Dunn logic, and the concept of bi-lattices or twist product algebras.
- this approach can be extended to encompass uncertainty measures like probabilities, belief functions, and graded reasoning.

Two-layer logics for uncertainty

Two-layer syntax. ($\mathcal{L}_{i}, \mathcal{M}, \mathcal{L}_{o}$) with

- inner language \mathcal{L}_{i} (events, evidence)

CPC

- outer language \mathcal{L}_{o} (agent, belief)
$Ł$ or linear inequalities
- \mathcal{M} : Modalities $m:\left(\mathcal{L}_{i}\right)^{n} \rightarrow \mathcal{L}_{o}$

Two-layer semantics consists of

- semantics of \mathcal{L}_{i}

$$
\begin{array}{r}
(\mathcal{P}(W), \cap, \cup,-) \\
\mu: \mathcal{P}(W) \rightarrow[0,1] \\
{[0,1]_{\mathrm{L}}}
\end{array}
$$

- interpretation of modalities \mathcal{M}
- semantics of \mathcal{L}_{o}

Two-layer axiomatization of $L=\left(L_{i}, M, L_{o}\right)$ consists of

- a complete axiomatics of the inner logic L_{i}
- modal axioms and rules M

$$
P \neg \varphi \leftrightarrow \sim P \varphi \text { or } P \neg \varphi=1-P \varphi
$$

- a complete axiomatics of the outer logic L_{o}.

Two-layer logics for uncertainty

- Fagin, Halpern, Meggido 1990's: two-layer logics for reasoning about probability and belief (CPC, probability, reasoning about linear inequalities),
- Zhou 2013: generalization of belief functions, and the logics above, to distributive lattices (BD, belief, reasoning about linear inequalities),
- Hájek, Godo, Esteva 1995: two-layer modal logics, with many-valued modality "probably" (CPC, P, Ł),
- Cintula \& Noguera 2014: an abstract framework of two-layer modal logics, with a general theory of syntax, semantics and completeness.
- This talk: two-layer modal logics, with a many-valued modalities based on Belnapian probabilities or belief (and plausibility) functions (BD, M, L_{o}) with L_{o} derived from $Ł u k a s i e w i c z$ logic.

Belnapian two-layer logics for uncertainty

Two-layer syntax. ($\mathcal{L}_{i}, \mathcal{M}, \mathcal{L}_{o}$) with

- inner language \mathcal{L}_{i} (evidence)
- outer language \mathcal{L}_{o} (agent, belief)
L_{\urcorner}or linear inequalities
- \mathcal{M} : Modalities $m:\left(\mathcal{L}_{i}\right)^{n} \rightarrow \mathcal{L}_{o}$

Two-layer semantics consists of

- semantics of \mathcal{L}_{i}

$$
\begin{array}{r}
\left(\mathcal{P}(S)^{\bowtie},\right. \\
\mu: \mathcal{P}(S, \neg) \\
\rightarrow[0,1] \\
{[0,1]_{\mathrm{L}}^{\bowtie}}
\end{array}
$$

- interpretation of modalities \mathcal{M}
- semantics of \mathcal{L}_{o}

Two-layer axiomatization of $L=\left(L_{i}, M, L_{o}\right)$ consists of

- a complete axiomatics of the inner logic L_{i}
- modal axioms and rules M

$$
P \neg \varphi \leftrightarrow \neg P \varphi \text { or } P^{+} \neg \varphi=P^{-} \varphi
$$

- a complete axiomatics of the outer logic L_{o}.

Belnap-Dunn as the inner logic: qualifying evidence

Language $\mathcal{L}_{\mathrm{BD}}: \quad \varphi:=p \in \operatorname{Prop}|\varphi \wedge \varphi| \varphi \vee \varphi \mid \neg \varphi$
$(4, \wedge, \vee, \neg)$ is a de Morgan algebra

- $(4, \wedge, \vee)$ is a distributive lattice
- each element represents the availability of positive and/or negative information
t : true (top)
n : no info b : contradictory info
f : false (bottom)
- \neg is an involutive de Morgan negation.

BD consequence relation and Exactly true logic
Γ F $_{\mathrm{BD}} \varphi$ given as preservation of $\{t, b\}$.

$(0,1)$
Γ EETL φ given as preservation of $\{t\}$.

Belnap-Dunn as the inner logic: axiomatics

BD is completely axiomatized using the following axioms and rules:

$$
\begin{array}{llll}
\varphi \wedge \psi \vdash \varphi & \varphi \wedge \psi \vdash \psi & \varphi \vdash \psi \vee \varphi & \varphi \vdash \varphi \vee \psi \\
\varphi \vdash \neg \neg \varphi & \neg \neg \varphi \vdash \varphi & \varphi \wedge(\psi \vee \chi) \vdash(\varphi \wedge \psi) \vee(\varphi \wedge \chi) \\
\neg \varphi \wedge \neg \psi \vdash \neg(\varphi \vee \psi) & \neg(\varphi \wedge \psi) \vdash \neg \varphi \vee \neg \psi \\
\frac{\varphi \vdash \psi, \psi \vdash \chi}{\varphi \vdash \chi} & \frac{\varphi \vdash \psi, \varphi \vdash \chi}{\varphi \vdash \psi \wedge \chi} & \frac{\varphi \vdash \chi, \psi \vdash \chi}{\varphi \vee \psi \vdash \chi} & \frac{\varphi \vdash \psi}{\neg \psi \vdash \neg \varphi}
\end{array}
$$

- $\Gamma \vdash_{\mathrm{BD}} \varphi$ is the consequence relation generated by the above
- $B D$ is strongly complete and locally finite.
- BD allows for a unique (irredundant) DNF and CNF.
- ETL: $\vdash_{E T L}$ is obtained from $\vdash_{B D}$ adding $\neg \varphi \wedge(\varphi \vee \psi) \vdash \psi$

Belnap-Dunn as the inner logic: frame semantics [Dunn 76]
Language $\mathcal{L}_{\mathrm{BD}} \quad \varphi:=p \in \operatorname{Prop}|\varphi \wedge \varphi| \varphi \vee \varphi \mid \neg \varphi$
4-valued Models $M=\langle S, v: S \times \operatorname{Prop} \rightarrow 4\rangle$
v is extended to formulas in the standard way.

Double-valuation semantics $M=\left\langle S, \Vdash^{+}, \Vdash^{-}\right\rangle$

$$
s \Vdash^{+} \varphi \text { iff } v(s)(\varphi) \in\{t, b\} \quad s \mathbb{1}^{-} \varphi \text { iff } v(s)(\varphi) \in\{f, b\} .
$$

i.e.

$$
\begin{aligned}
& s \Vdash^{+} \varphi \wedge \psi \text { iff } s \Vdash^{+} \varphi \text { and } s \Vdash^{+} \psi \\
& s \Vdash^{-} \varphi \wedge \psi \text { iff } s \Vdash^{-} \varphi \text { or } s \Vdash^{-} \psi \\
& s \Vdash^{-} \varphi \vee \psi \text { iff } s \Vdash^{-} \varphi \text { and } s \Vdash^{-} \psi \\
& s \Vdash^{+} \neg \varphi \quad \text { iff } s \Vdash^{-} \varphi \\
& |\varphi|^{+}=\left\{s \mid s \Vdash^{+} \varphi\right\} \\
& s \Vdash^{+} \varphi \vee \psi \text { iff } s \Vdash^{+} \varphi \text { or } s \Vdash^{+} \psi \\
& s \Vdash^{-} \neg \varphi \text { iff } s \Vdash^{+} \varphi \\
& |\varphi|^{-}=\left\{s \mid s \Vdash^{-} \varphi\right\}
\end{aligned}
$$

Consequence relation $\Gamma \mathrm{F}_{\mathrm{BD}} \varphi$ iff $\forall M, s\left(s \Vdash^{+} \Gamma \rightarrow s \Vdash^{+} \varphi\right)$.

Belnapian probabilities: quantifying evidence

- $\mathrm{m}: S \rightarrow[0,1]$ a mass function: $\sum_{s \in S} \mathrm{~m}(s)=1$
- $\mathrm{p}: \mathcal{P} S \rightarrow[0,1]$ given by

$$
\mathrm{p}(X)=\sum\{\mathrm{m}(s) \mid s \in X\}
$$

- Generates an assignment $\left(\mathrm{p}^{+}, \mathrm{p}^{-}\right): L_{\mathrm{BD}} \rightarrow[0,1] \times[0,1]^{o p}$:

$$
\begin{aligned}
& \mathrm{p}^{+}(\varphi)=\mathrm{p}\left(|\varphi|^{+}\right)=\sum\left\{\mathrm{m}(s) \mid s \Vdash^{+} \varphi\right\} \\
& \mathrm{p}^{-}(\varphi)=\mathrm{p}\left(|\varphi|^{-}\right)=\mathrm{p}^{+}(\neg \varphi) \quad \neg \text {-coherence }
\end{aligned}
$$

The probability function p^{+}satisfies:

(A1) normalization $0 \leq \mathrm{p}^{+}(\varphi) \leq 1$
(A2) monotonicity if $\varphi \vdash_{\mathrm{BD}} \psi$ then $\mathrm{p}^{+}(\varphi) \leq \mathrm{p}^{+}(\psi)$
(A3) incl.-excl.

$$
\mathrm{p}^{+}(\varphi \wedge \psi)+\mathrm{p}^{+}(\varphi \vee \psi)=\mathrm{p}^{+}(\varphi)+\mathrm{p}^{+}(\psi)
$$

- D. Klein, O. Majer, S. Raffie-Rad, Probabilities with gaps and gluts, JPL 2021.
- C. Zhou, Belief functions on distributive lattices. Artif. Intell. 201, (2013).

Belnapian probabilities: quantifying evidence

- m : $\mathcal{P}_{\text {Lit }} \rightarrow[0,1]$ a mass function: $\sum_{\Gamma \subseteq L i t} m(\Gamma)=1$
- Generates an assignment $\left(\mathrm{p}^{+}, \mathrm{p}^{-}\right): L_{\mathrm{BD}} \rightarrow[0,1] \times[0,1]^{o p}$:

$$
\begin{aligned}
& \mathrm{p}^{+}(\varphi)=\sum_{\{\mathrm{m}(\Gamma) \mid \Gamma \vdash \varphi\}} \mathrm{p}^{-}(\varphi)=\mathrm{p}^{+}(\neg \varphi) \quad \neg \text {-coherence }
\end{aligned}
$$

The probability function p^{+}satisfies:
(A1) normalization $0 \leq \mathrm{p}^{+}(\varphi) \leq 1$
(A2) monotonicity if $\varphi \vdash_{\mathrm{BD}} \psi$ then $\mathrm{p}^{+}(\varphi) \leq \mathrm{p}^{+}(\psi)$ (A3) incl.-excl. $\quad \mathrm{p}^{+}(\varphi \wedge \psi)+\mathrm{p}^{+}(\varphi \vee \psi)=\mathrm{p}^{+}(\varphi)+\mathrm{p}^{+}(\psi)$.

- D. Klein, O. Majer, S. Raffie-Rad, Probabilities with gaps and gluts, JPL 2021.
- C. Zhou, Belief functions on distributive lattices. Artif. Intell. 201, (2013).

Other uncertainty measures $\mathrm{p}, \mathrm{bel}, \mathrm{pl}: \mathcal{P} S \rightarrow[0,1]$

(A1) normalization, (A2) monotonicity, and
Inner probabilities $\left(\mathrm{p}^{+}, \mathrm{p}^{-}\right): \mathrm{p}^{-}(\varphi)=\mathrm{p}^{+}(\neg \varphi)$
(A3) incl.-excl. $\quad \mathrm{p}^{+}(\varphi \vee \psi) \geq \mathrm{p}^{+}(\varphi)+\mathrm{p}^{+}(\psi)-\mathrm{p}^{+}(\varphi \wedge \psi)$
General belief functions (bel ${ }^{+}$, bel $^{-}$) : $\operatorname{bel}^{-}(\varphi)=\operatorname{bel}^{+}(\neg \varphi)$
$\left(\mathrm{A}_{n}\right) n$-monotonicity $\operatorname{bel}^{+}\left(\bigvee_{i=1}^{n} \varphi_{i}\right) \geq \sum_{\substack{J 1, \ldots, n\} \\ J \neq \varnothing}}(-1)^{|J|+1} \cdot \mathrm{bel}^{+}\left(\bigwedge_{j \in J} \varphi_{j}\right)$

General plausibility functions $\left(\mathrm{pl}^{+}, \mathrm{pl}^{-}\right)$: $\mathrm{pl}^{-}(\varphi)=\mathrm{pl}^{+}(\neg \varphi)$
(A A_{n}) n-monotonicity $\mathrm{pl}^{+}\left(\bigcap_{i=1}^{n} \varphi_{i}\right) \leq \sum_{\substack{J \subseteq\{1, \ldots, n\} \\ J \neq \varnothing}}(-1)^{|J|+1} \cdot \mathrm{pl}^{+}\left(\bigvee_{j \in J} \varphi_{j}\right)$
Similarly, we can consider possibilities and necessities, or qualitative probabilities.

Example: belief based on (multiple) information sources

- A model provides sets $|\varphi|^{+}=\left\{s \mid s \Vdash^{+} \varphi\right\}$ and $|\varphi|^{-}=\left\{s \mid s \Vdash^{-} \varphi\right\}$
- They can intersect and do not have to cover S
- each source provides probabilities ($\mathrm{p}^{+}(\varphi), \mathrm{p}^{-}(\varphi)$) (or belief functions (bel ${ }^{+}(\varphi)$, bel $\left.^{-}(\varphi)\right)$)

States of a model:

$\mathbb{1}^{+} \varphi$	$\mathbb{1}^{+} \varphi$
	$\mathbb{I}^{-} \varphi$
	$\mathbb{I}^{-} \varphi$

- an aggregation provides an assignment $\left(B^{+}(\varphi), B^{-}(\varphi)\right)=$ a degree of belief
- Belief assignment can be a Belnapian probability: then it satisfies the probability axioms,
- it can be a Belnapian belief function: then it satisfies the belief function axioms,
- or, it can be just monotone and coherent:

$$
\varphi \vdash_{\mathrm{BD}} \psi / B^{+}(\varphi) \leq B^{+}(\psi) \quad B^{-}(\varphi)=B^{+}(\neg \varphi) .
$$

Belnapian uncertainty measures: the range $[0,1] \times[0,1]^{o p}$

Continuous extension of 4 : the twist product $[0,1]^{\bowtie}$ with $\mathbf{L}_{[0,1]}=([0,1]$, min, max $)$.

The twist product $[0,1]^{\bowtie}$

$$
\begin{align*}
\left(a_{1}, a_{2}\right) \wedge\left(b_{1}, b_{2}\right) & =\left(a_{1} \wedge b_{1}, a_{2} \vee b_{2}\right) \tag{0,0}\\
\left(a_{1}, a_{2}\right) \vee\left(b_{1}, b_{2}\right) & =\left(a_{1} \vee b_{1}, a_{2} \wedge b_{2}\right) \\
\neg\left(a_{1}, a_{2}\right) & =\left(a_{2}, a_{1}\right)
\end{align*}
$$

$(0,1)$

- ($\left.\mathrm{p}^{+}(\varphi), \mathrm{p}^{-}(\varphi)\right)$: positive/negative probabilistic support of φ
- "classical" vertical line: $\mathrm{p}^{+}(\varphi)=1-\mathrm{p}^{-}(\varphi)$,
- Graded reasoning about (belief based on) probabilities or belief functions can be interpreted over expansions of $[0,1]^{\bowtie}$.

Two-dimensional outer logics for probabilities and belief functions

- to be interpreted over an algebra (matrix) expanding $[0,1]^{\bowtie}$ with implication, fusion, negation, ...
- to be able to express all three probability (belief functions) axioms
- derived from Łukasiewicz logic and [0, 1] L_{L}
- two ways of negating implication
(a) "de Morgan" way, using a co-implication

$$
\neg(a \rightarrow b):=(\neg b \ominus \neg a)
$$

(b) "Nelson" way, combining positive and negative semantical values

$$
\neg(a \rightarrow b):=(a \& \neg b)
$$

Two-dimensional logics for comparative uncertainty

- to be interpreted over an algebra (matrix) expanding $[0,1]^{\bowtie}$ with implication, fusion, negation, ...
- to be able to express: monotonicity and coherence in case of comparative uncertainty
- derived from Gödel logic and $[0,1]_{G}$
- two ways of negating implication
(a) "de Morgan" way, using a co-implication (bi-Gödel logic)

$$
\neg(a \rightarrow b):=(\neg b \prec \neg a)
$$

(b) "Nelson" way, combining positive and negative semantical values

$$
\neg(a \rightarrow b):=(a \wedge \neg b)
$$

case (a): ${ }^{2}$, reasoning with probabilities or bel. functions

Standard MV algebra

$$
[0,1]_{\mathrm{L}}=\left([0,1], \wedge, \vee, \&_{\mathrm{L}}, \rightarrow_{\mathrm{L}}\right):
$$

$$
\begin{array}{rlrl}
a \wedge b & :=\min \{a, b\}, & a \&_{\mathrm{£}} b & :=\max \{0, a+b-1\} \\
a \vee b & :=\max \{a, b\} & a \rightarrow_{\mathrm{E}} b & :=\min \{1,1-a+b)\} \\
\sim_{\mathrm{£}} a & :=a \rightarrow_{\mathrm{E}} 0=1-a & a \&_{\mathrm{£}} b \leq c & \Leftrightarrow b \leq a \rightarrow_{\mathrm{E}} c
\end{array}
$$

Definable connectives:

$$
\begin{aligned}
a \oplus_{\mathrm{L}} b & :=\sim a \rightarrow_{\mathrm{L}} b=\min \{1, a+b\} \\
a \ominus_{\mathrm{L}} b & :=\sim\left(a \rightarrow_{\mathrm{E}} b\right)=\max \{0, a-b\} \\
c \leq a \oplus_{\mathrm{L}} b & \Leftrightarrow c \ominus_{\mathrm{L}} b \leq a
\end{aligned}
$$

\ominus_{E} is a co-implication.
case (a): ${ }^{2}$, reasoning with probabilities or bel. functions
twist product $[0,1]^{\bowtie}, \neg\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right), F=\{(1,0)\}$,
$[0,1]^{\bowtie}$ expanded with

$$
\begin{aligned}
\left(a_{1}, a_{2}\right) \rightarrow\left(b_{1}, b_{2}\right) & =\left(a_{1} \rightarrow_{\mathrm{E}} b_{1}, b_{2} \ominus_{\mathrm{£}} a_{2}\right) \\
\left(a_{1}, a_{2}\right) \&\left(b_{1}, b_{2}\right) & =\left(a_{1} \&_{\mathrm{E}} b_{1}, a_{2} \oplus_{\mathrm{E}} b_{2}\right) \\
\sim\left(a_{1}, a_{2}\right) & =\left(\sim_{\mathrm{E}} a_{1}, \sim_{\mathrm{E}} a_{2}\right)
\end{aligned}
$$

$(0,1)$

Notice: \neg is symmetry along the horizontal, \sim is symmetry along the middle point, $\sim \neg$ is symmetry along the vertical (conflation). $\neg \alpha \leftrightarrow \sim \alpha$ defines the vertical. \neg and \sim are distinct.
$\Gamma E_{\mathrm{L}^{2}} \alpha$ defined as preservation of $(1,0)$.
Its ($\wedge, \vee, \neg)$-fragment coincides with ETL.
case (a): ${ }^{2}$, reasoning with probabilities or bel. functions twist product $[0,1]^{\bowtie}, \neg\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right), F=(1,1)^{\uparrow}$,
$[0,1]^{\bowtie}$ expanded with

$$
\begin{align*}
\left(a_{1}, a_{2}\right) \rightarrow\left(b_{1}, b_{2}\right) & =\left(a_{1} \rightarrow_{\mathrm{E}} b_{1}, b_{2} \ominus_{\mathrm{E}} a_{2}\right) \tag{0,0}\\
\left(a_{1}, a_{2}\right) \&\left(b_{1}, b_{2}\right) & =\left(a_{1} \&_{\mathrm{E}} b_{1}, a_{2} \oplus_{\mathrm{L}} b_{2}\right) \\
\sim\left(a_{1}, a_{2}\right) & =\left(\sim_{\mathrm{E}} a_{1}, \sim_{\mathrm{E}} a_{2}\right) \tag{0,1}
\end{align*}
$$

Notice: \neg is symmetry along the horizontal, \sim is symmetry along the middle point, $\sim \neg$ is symmetry along the vertical (conflation).
$\neg \alpha \leftrightarrow \sim \alpha$ defines the vertical. \neg and \sim are distinct.
$\Gamma \vDash_{\mathrm{E}_{(1,1)^{\uparrow}}^{2}} \alpha$ defined as preservation of $(1,1)^{\uparrow}$. Its (\wedge, \vee, \neg)-fragment coincides with BD.
case (a): ${ }^{2}$, reasoning with probabilities or bel. functions

L^{2} : L expanded with the bi-lattice negation \neg.

Axiomatization of E^{2}

$$
\begin{aligned}
\alpha & \rightarrow(\beta \rightarrow \alpha) \\
(\alpha \rightarrow \beta) & \rightarrow((\beta \rightarrow \gamma) \rightarrow(\alpha \rightarrow \gamma)) \\
((\alpha \rightarrow \beta) \rightarrow \beta) & \rightarrow((\beta \rightarrow \alpha) \rightarrow \alpha) \\
(\sim \beta \rightarrow \sim \alpha) & \rightarrow(\alpha \rightarrow \beta)
\end{aligned}
$$

$$
\begin{gathered}
\neg \neg \alpha \leftrightarrow \alpha \\
\neg \sim \alpha \leftrightarrow \sim \neg \alpha \\
(\sim \neg \alpha \rightarrow \sim \neg \beta) \leftrightarrow \sim \neg(\alpha \rightarrow \beta) \\
\alpha, \alpha \rightarrow \beta \vdash \beta \quad \alpha \vdash \sim \neg \alpha
\end{gathered}
$$

- \neg - negation normal form
- Local Deduction Theorem:

$$
\Gamma, \alpha \vdash_{\mathrm{L}^{2}} \beta \text { iff } \exists n \Gamma \vdash_{\mathrm{L}^{2}}(\sim \neg \alpha)^{n} \rightarrow \beta
$$

Theorem (FSSC):

E^{2} is finitely strongly standard-complete w.r.t. $\left(\left([0,1]^{\bowtie}, \rightarrow, \sim\right),\{(1,0)\}\right)$.
case (a): $\mathrm{E}_{(1,1)^{\uparrow}}^{2}$
Axiomatization of $\mathrm{E}_{(1,1)^{\dagger}}^{2}$

$$
\begin{aligned}
\alpha & \rightarrow(\beta \rightarrow \alpha) \\
(\alpha \rightarrow \beta) & \rightarrow((\beta \rightarrow \gamma) \rightarrow(\alpha \rightarrow \gamma)) \\
((\alpha \rightarrow \beta) \rightarrow \beta) & \rightarrow((\beta \rightarrow \alpha) \rightarrow \alpha) \\
(\sim \beta \rightarrow \sim \alpha) & \rightarrow(\alpha \rightarrow \beta)
\end{aligned}
$$

$$
\begin{aligned}
\neg \neg \alpha & \leftrightarrow \alpha \\
\neg \sim \alpha & \leftrightarrow \sim \neg \alpha \\
(\sim \neg \alpha \rightarrow \sim \neg \beta) & \leftrightarrow \sim \neg(\alpha \rightarrow \beta) \\
\alpha, \alpha \rightarrow \beta \vdash \beta & \vdash \alpha / \vdash \sim \neg \alpha
\end{aligned}
$$

- \neg - negation normal form
- Local Deduction Theorem:

$$
\Gamma, \alpha \vdash_{\mathrm{E}_{(1,1) \uparrow}^{2} \uparrow} \beta \text { iff } \exists n \Gamma \vdash_{\mathrm{E}_{(1,1) \uparrow}^{2} \uparrow} \alpha^{n} \rightarrow \beta
$$

Theorem (FSSC):

$\mathrm{E}_{(1,1)^{\uparrow}}^{2}$ is finitely strongly standard-complete w.r.t. $\left(\left([0,1]^{\bowtie}, \rightarrow, \sim\right),(1,1)^{\uparrow}\right)$.

Adding a \triangle operator: $\mathrm{E}^{2} \Delta$
On the standard MV algebra: $\quad \Delta_{\mathrm{E}} a=\left\{\begin{array}{l}1, \text { if } a=1 \\ 0 \text { else }\end{array}\right.$
($\triangle 1$) $\quad \Delta \alpha \vee \sim \Delta \alpha$
$(\Delta 2) \quad \Delta \alpha \rightarrow \alpha$
$(\triangle 3) \quad \Delta \alpha \rightarrow \Delta \Delta \alpha$

$$
\Delta\left(a_{1}, a_{2}\right)=\left(\Delta_{\mathrm{E}} a_{1}, \sim_{\mathrm{E}} \Delta_{\mathrm{E}} \sim_{\mathrm{E}} a_{2}\right)
$$

$(\triangle 4) \quad \Delta(\alpha \vee \beta) \rightarrow \Delta \alpha \vee \Delta \beta$
$(\triangle 5) \quad \Delta(\alpha \rightarrow \beta) \rightarrow \Delta \alpha \rightarrow \Delta \beta$
($\Delta 6$) $\quad \neg \Delta \alpha \leftrightarrow \sim \Delta \sim \neg \alpha$
(Nec) $\quad \alpha / \Delta \alpha$
Globalization operator on $[0,1]_{\mathrm{E}}^{\bowtie}: \quad \Delta \alpha:=\Delta \alpha \wedge \sim \neg \Delta \alpha$
$\Delta\left(a_{1}, a_{2}\right)=\left\{\begin{array}{l}(1,0), \text { if }\left(a_{1}, a_{2}\right)=(1,0) \\ (0,1) \text { else }\end{array}\right.$

- $ᄀ$ - negation normal form
- Δ-Deduction Theorem: $\Gamma, \alpha \vdash_{\mathrm{L}^{2} \Delta} \beta$ iff $\Gamma \vdash_{\mathrm{L}^{2} \Delta} \Delta \alpha \rightarrow \beta$
- Finite strong standard completeness (FSSC)

Case (b): Nも, reasoning with probabilities or bel. functions

twist product $[0,1]^{\bowtie}, \neg\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right), F=(1,1)^{\uparrow}$:
$[0,1]^{\bowtie}$ expanded with

$$
\begin{align*}
\left(a_{1}, a_{2}\right) \rightarrow\left(b_{1}, b_{2}\right) & =\left(a_{1} \rightarrow_{\mathrm{E}} b_{1}, a_{1} \&_{\mathrm{E}} b_{2}\right) \tag{0,0}\\
\left(a_{1}, a_{2}\right) \&\left(b_{1}, b_{2}\right) & =\left(a_{1} \&_{\mathrm{E}} b_{1}, a_{1} \rightarrow_{\mathrm{E}} \sim_{\mathrm{E}} b_{1}\right) \\
\sim\left(a_{1}, a_{2}\right) & =\left(\sim_{\mathrm{E}} a_{1}, a_{1}\right)
\end{align*}
$$

$(0,1)$
$\Gamma E_{\text {NE }} \alpha$ defined as preservation of $F=\{(1, a) \mid a \in[0,1]\}$. Its ($\wedge, \vee, \neg)$-fragment coincides with BD.

The weak equivalence $\alpha \leftrightarrow \beta:=(\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha)$ is not congruential, the strong one $\alpha \longleftrightarrow \beta:=(\alpha \leftrightarrow \beta) \wedge(\neg \alpha \leftrightarrow \neg \beta)$ is.

Case (b): Nも, reasoning with probabilities or bel. functions

twist product $[0,1]^{\bowtie}, \neg\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right), F=(1,1)^{\uparrow}$:
$[0,1]^{\bowtie}$ expanded with

$$
\begin{align*}
\left(a_{1}, a_{2}\right) \rightarrow\left(b_{1}, b_{2}\right) & =\left(a_{1} \rightarrow_{\mathrm{E}} b_{1}, a_{1} \&_{\mathrm{E}} b_{2}\right) \tag{0,0}\\
\left(a_{1}, a_{2}\right) \&\left(b_{1}, b_{2}\right) & =\left(a_{1} \&_{\mathrm{E}} b_{1}, a_{1} \rightarrow_{\mathrm{E}} \sim_{\mathrm{E}} b_{1}\right) \\
\sim\left(a_{1}, a_{2}\right) & =\left(\sim_{\mathrm{E}} a_{1}, a_{1}\right)
\end{align*}
$$

$(0,1)$
$\Gamma \boldsymbol{F}_{\mathrm{NL}} \alpha$ defined as preservation of $F=\{(1, a) \mid a \in[0,1]\}$. Its (\wedge, \vee, \neg)-fragment coincides with BD.
$\sim \alpha$ is always on the vertical. $\sim \alpha \leftrightarrow \neg \alpha$ defines the vertical, $\sim \alpha \rightarrow \neg \alpha$ defines the right triangle, and $\neg \alpha \rightarrow \sim \alpha$ the left. $(\alpha \rightarrow \beta) \wedge(\neg \alpha \rightarrow \neg \beta)$ captures the information order.

Case (b): Nも, reasoning with probabilities or bel. functions

Axiomatics of NE:

The axioms of $Ł u k a s i e w i c z$ logic (in terms of \rightarrow) with MP as the only rule, plus the \neg-axioms:

$$
\begin{aligned}
\neg \neg \alpha & \leftrightarrow \alpha \\
\neg(\alpha \wedge \beta) & \leftrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \leftrightarrow \neg \alpha \wedge \neg \beta \\
\neg(\alpha \rightarrow \beta) & \leftrightarrow(\alpha \& \neg \beta) \\
\neg(\alpha \& \beta) & \leftrightarrow(\alpha \rightarrow \sim \beta) \\
\neg \sim \alpha & \leftrightarrow \alpha
\end{aligned}
$$

- \neg-negation normal form (weakly equivalent only)
- Local Deduction Theorem as in E
- Finite strong standard completeness (FSSC)

case II.(a): $G_{(1,0)}^{2}(\rightarrow)$, comparative uncertainty

Standard Gödel algebra:

$$
[0,1]_{G}=\left([0,1], \wedge, \vee, \rightarrow_{G}\right)
$$

$$
\begin{gathered}
a \rightarrow_{G} b=\left\{\begin{array}{l}
1, \text { if } a \leq b \\
b \text { else }
\end{array} \quad \sim_{G} a:=a \rightarrow_{G} 0\right. \\
c \leq a \rightarrow_{G} b \text { iff } a \wedge c \leq b
\end{gathered}
$$

can be expanded by a co-implication:

$$
\begin{aligned}
& b \prec_{G} a=\left\{\begin{array}{l}
0, \text { if } b \leq a \\
b \text { else }
\end{array} \quad-{ }_{G} a:=1 \prec_{G} a\right. \\
& b \prec_{G} a \leq c \text { iff } b \leq a \vee c
\end{aligned}
$$

case (a): $G_{(1,0)}^{2}(\rightarrow)$, comparative uncertainty
twist product $[0,1]^{\bowtie}, \neg\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right), F=\{(1,0)\}$,
$[0,1]^{\bowtie}$ expanded with

$$
\begin{aligned}
\left(a_{1}, a_{2}\right) \rightarrow\left(b_{1}, b_{2}\right) & =\left(a_{1} \rightarrow_{G} b_{1}, b_{2} \prec_{G} a_{2}\right) \\
\left(a_{1}, a_{2}\right) \prec\left(b_{1}, b_{2}\right) & =\left(a_{1} \prec_{G} b_{1}, b_{2} \rightarrow_{G} a_{2}\right) \\
\sim\left(a_{1}, a_{2}\right) & =\left(\sim_{G} a_{1},-{ }_{G} a_{2}\right)
\end{aligned}
$$

$(0,1)$
$\Gamma F_{G_{(1,0)}^{2}(\rightarrow)} \alpha$ defined as preservation of $(1,0)$. Its (\wedge, \vee, \neg)-fragment coincides with ETL.
case (a): $G_{(1,1)^{\uparrow}}^{2}(\rightarrow)$, comparative uncertainty
twist product $[0,1]^{\bowtie}, \neg\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right), F=(1,1)^{\uparrow}$,
$[0,1]^{\bowtie}$ expanded with

$$
\begin{aligned}
\left(a_{1}, a_{2}\right) \rightarrow\left(b_{1}, b_{2}\right) & =\left(a_{1} \rightarrow_{G} b_{1}, b_{2} \prec_{G} a_{2}\right) \\
\left(a_{1}, a_{2}\right) \prec\left(b_{1}, b_{2}\right) & =\left(a_{1} \prec_{G} b_{1}, b_{2} \rightarrow_{G} a_{2}\right) \\
\sim\left(a_{1}, a_{2}\right) & =\left(\sim_{G} a_{1},-{ }_{G} a_{2}\right)
\end{aligned}
$$

$(0,1)$
$\Gamma F_{G_{(1,1) \uparrow}^{2}(\rightarrow)} \alpha$ defined as preservation of $(1,1)^{\uparrow}$. Its (\wedge, \vee, \neg)-fragment coincides with BD.
case (a): $G_{(1,0)}^{2}(\rightarrow)$, comparative uncertainty $G_{(1,0)}^{2}(\rightarrow)$: bi-Gödel logic expanded with a bi-lattice negation

Axiomatization: bi-IL in the language $\{\wedge, \vee, \rightarrow, \prec, 0,1\}$ extended with the prelinearity axiom: $(\alpha \rightarrow \beta) \vee(\beta \rightarrow \alpha)$

$$
\begin{aligned}
& \neg \neg \alpha \leftrightarrow \alpha \neg 0 \leftrightarrow \sim 0 \\
& \neg(\alpha \wedge \beta) \leftrightarrow(\neg \alpha \vee \neg \beta) \\
& \neg(\alpha \vee \beta) \leftrightarrow(\neg \alpha \wedge \neg \beta) \\
& \neg(\alpha \rightarrow \beta) \leftrightarrow(\neg \beta \prec \neg \alpha) \\
& \alpha \vdash \sim \neg \alpha
\end{aligned}
$$

- \neg-negation normal form; $p \wedge \neg p \vdash q$
- Deduction theorem: $\Gamma, \alpha \vdash \beta$ iff $\Gamma \vdash \sim-\alpha \wedge \sim \neg \alpha \rightarrow \beta$
- Standard strong completeness (SSC)
- Its theorems coincide with Wansing's $I_{4} C_{4}$ extended with prelinearity axiom.
case (a): $G_{(1,1)^{\uparrow}}^{2}(\rightarrow)$, comparative uncertainty
Axiomatization: bi-IL in the language $\{\wedge, \vee, \rightarrow, \prec, 0,1\}$ extended with the prelinearity axiom: $(\alpha \rightarrow \beta) \vee(\beta \rightarrow \alpha)$

$$
\begin{aligned}
\neg \neg \alpha & \leftrightarrow \alpha \neg 0 \leftrightarrow \sim 0 \\
\neg(\alpha \wedge \beta) & \leftrightarrow(\neg \alpha \vee \neg \beta) \\
\neg(\alpha \vee \beta) & \leftrightarrow(\neg \alpha \wedge \neg \beta) \\
\neg(\alpha \rightarrow \beta) & \leftrightarrow(\neg \beta \prec \neg \alpha) \\
\vdash \alpha & / \vdash \sim \neg \alpha
\end{aligned}
$$

- \neg-negation normal form; $p \wedge \neg p \nvdash q$
- Deduction theorem: $\Gamma, \alpha \vdash \beta$ iff $\Gamma \vdash \sim-\alpha \rightarrow \beta$
- Standard strong completeness (SSC)
- = Wansing's $I_{4} C_{4}$ extended with prelinearity axiom.

Case (b): $G_{(1,1)^{\uparrow}}^{2}(\rightarrow)$, comparative uncertainty
twist product $[0,1]^{\bowtie}, \neg\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right), F=(1,1)^{\uparrow}$:

$[0,1]^{\bowtie}$ expanded with

$$
\begin{aligned}
\left(a_{1}, a_{2}\right) \rightarrow\left(b_{1}, b_{2}\right) & =\left(a_{1} \rightarrow_{G} b_{1}, a_{1} \wedge b_{2}\right) \\
\sim\left(a_{1}, a_{2}\right) & =\left(\sim_{G} a_{1}, a_{1}\right)
\end{aligned}
$$

$(1,0)$

$(0,1)$
$\Gamma \vDash_{G_{(1,1)^{\uparrow}}^{2}(\rightarrow)} \alpha$ defined as preservation of $F=\{(1, a) \mid a \in[0,1]\}$.
The weak equivalence $\alpha \leftrightarrow \beta:=(\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha)$ is not congruential, the strong one $\alpha \Longleftrightarrow \beta:=(\alpha \leftrightarrow \beta) \wedge(\neg \alpha \leftrightarrow \neg \beta)$ is.

Case (b): $G_{(1,1)^{\uparrow}}^{2}(\rightarrow)$, comparative uncertainty
twist product $[0,1]^{\infty}, \neg\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right), F=(1,1)^{\uparrow}$:
$[0,1]^{\bowtie}$ expanded with

$$
\begin{aligned}
\left(a_{1}, a_{2}\right) \rightarrow\left(b_{1}, b_{2}\right) & =\left(a_{1} \rightarrow_{G} b_{1}, a_{1} \wedge b_{2}\right) \\
\sim\left(a_{1}, a_{2}\right) & =\left(\sim_{G} a_{1}, a_{1}\right)
\end{aligned}
$$

$(0,1)$
$\Gamma \vDash_{G_{(1,1)^{\uparrow}}^{2}(\rightarrow)} \alpha$ defined as preservation of $F=\{(1, a) \mid a \in[0,1]\}$.
The resulting logic coincides with Nelson's $N 4^{\perp}$ extended with prelinearity (global consequence).

Two-dimensional logics: summing up

... of quantified uncertainty

- $\mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)=\mathrm{NE}, \mathrm{E}_{(1,0)^{\uparrow}}^{2}(\rightarrow)=\mathrm{E}^{2}, \mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)$
- FSSC, SC w.r.t. twist products of MV algebras (MV-chains)
- Varying the filters $(x, y)^{\uparrow}$: different tautologies, different entailments
- Constraint tableaux calculi, finitary entailment
 is coNP-complete.
- M.B., S. Frittella, D. Kozhemiachenko. Constraint tableaux for two-dimensional fuzzy logics, TABLEAUX 2021.
- M.B., S. Frittella, D. Kozhemiachenko, O. Majer, S. Nazari. Reasoning with belief functions over Belnap-Dunn logic. submitted.

Two-dimensional logics: summing up

... of comparative uncertainty

- $G_{(1,0)^{\uparrow}}^{2}(\rightarrow), G_{(1,1)^{\uparrow}}^{2}(\rightarrow), G_{(1,1)^{\uparrow}}^{2}(\rightarrow)$
- SSC, SC w.r.t. twist products of G-algebras (G-chains) or bi-G algebras (bi-G chains)
- Frame semantics
- Varying the filters $(x, y)^{\uparrow}$: same tautologies, different entailments:
- Constraint tableaux calculi, frame semantics,
 finitary entailment is coNP-complete.
$1>x>y>0$ for $G^{2}(\rightarrow)$
$\mathrm{F}_{(x, 1)^{\uparrow}} \subset \mathrm{F}_{(1,1)^{\uparrow}} \subset \mathrm{F}_{(1,0)^{\uparrow}}$
$F_{(x, 1)^{\uparrow} \subset F_{(y, x) \uparrow}^{\uparrow} \subset F_{(x, x)} \uparrow} \subset F_{(x, y)^{\uparrow}} \subset F_{(1,0) \uparrow}$

An application: two-layer logics of probabilities

Belnapian probabilities (quantified uncertainty)

- Two-layer logics (BD, $M_{p}, \mathrm{~L}^{2}$), (BD, $M_{p}, \mathrm{E}^{2} \Delta$), or (BD, M_{p}^{N}, NE)
- Finite strong completeness w.r.t. intended semantics:

Models: $\left\langle S, \Vdash^{+}, \Vdash^{-}, \mathrm{p}: \mathcal{P} S \rightarrow[0,1]\right\rangle$
Semantics: $|P \varphi|:=\left(\mathrm{p}\left(|\varphi|^{+}\right), \mathrm{p}\left(|\varphi|^{-}\right)\right)$
Modal axioms

$$
\begin{gathered}
M_{p}: \quad \vdash_{\mathrm{L}^{2}} P \neg \varphi \leftrightarrow \neg P \varphi \quad\left\{\vdash_{\mathrm{L}^{2}} P \varphi \rightarrow P \psi \mid \varphi \vdash_{\mathrm{BD}} \psi\right\} \\
\vdash_{\mathrm{L}^{2}} P(\varphi \vee \psi) \leftrightarrow(P \varphi \ominus P(\varphi \wedge \psi)) \oplus P \psi
\end{gathered}
$$

- M.B., S. Frittella, O. Majer, S. Nazari. Belief based on inconsistent information, DaLi 2020, LNCS volume 12569, pp 68-86, 2020.
- M.B., S. Frittella, D. Kozhemiachenko, O. Majer, S. Nazari. Reasoning with belief functions over Belnap-Dunn logic. submitted.

An application: two-layer logics of probabilities

Belnapian probabilities (quantified uncertainty)

- Two-layer logics (BD, $M_{p}, \mathrm{~L}^{2}$), (BD, $M_{p}, \mathrm{~L}^{2} \Delta$), or ($\left.\mathrm{BD}, M_{p}^{N}, \mathrm{NE}\right)$
- Finite strong completeness w.r.t. intended semantics:

Models: $\left\langle S, \Vdash^{+}, \Vdash^{-}, \mathrm{p}: \mathcal{P} S \rightarrow[0,1]\right\rangle$
Semantics: $|P \varphi|:=\left(\mathrm{p}\left(|\varphi|^{+}\right), \mathrm{p}\left(|\varphi|^{-}\right)\right)$

Modal axioms

$$
\begin{aligned}
M_{p}^{N}: & \vdash_{\mathrm{NL}} P \neg \varphi \leftrightarrow \neg P \varphi \quad\left\{\vdash_{\mathrm{NE}} P \varphi \Longrightarrow P \psi \mid \varphi \vdash_{\mathrm{BD}} \psi\right\} \\
& \vdash_{\mathrm{NL}} P(\varphi \vee \psi) \leftrightarrow(P \varphi \ominus P(\varphi \wedge \psi)) \oplus P \psi \\
& \text { }_{\mathrm{NE}} P(\varphi \wedge \psi) \leftrightarrow(P \varphi \ominus P(\varphi \vee \psi)) \oplus P \psi
\end{aligned}
$$

- M.B., S. Frittella, O. Majer, S. Nazari. Belief based on inconsistent information, DaLi 2020, LNCS volume 12569, pp 68-86, 2020.
- M.B., S. Frittella, D. Kozhemiachenko, O. Majer, S. Nazari. Reasoning with belief functions over Belnap-Dunn logic. submitted.

Example: measuring $(\varphi \wedge \neg \varphi)$

For a BD formula φ,

NE

- $P(\varphi \wedge \neg \varphi) \rightarrow \sim(P(\varphi \wedge \neg \varphi))$ says "rather small degree of conflict" (closer to 0 then 1)
- $\sim P(\varphi \wedge \neg \varphi) \rightarrow(P(\varphi \wedge \neg \varphi))$ says "rather big degree of conflict" (closer to 1 then 0)
E^{2}
- $P(\varphi \wedge \neg \varphi) \rightarrow \sim(P(\varphi \wedge \neg \varphi))$ says "rather small degree of conflict" and "rather small degree of ignorance"
(By "says" we mean consequences of the formula being designated in the resp. algebra.)

Example: reasoning about $(\varphi \wedge \neg \varphi)$ in E^{2}

Assume $\sim P(\varphi \wedge \neg \varphi)$:

$$
\sim P(\varphi \wedge \neg \varphi) \vdash \sim \neg \sim P(\varphi \wedge \neg \varphi) \vdash \sim \sim \neg P(\varphi \wedge \neg \varphi) \vdash \neg P(\varphi \wedge \neg \varphi) \vdash P(\varphi \vee \neg \varphi) .
$$

From (A3) we know that $\vdash(P \varphi \ominus P(\varphi \wedge \neg \varphi)) \oplus P \neg \varphi$ which is equivalent to

$$
\vdash(P \varphi \rightarrow P(\varphi \wedge \neg \varphi)) \rightarrow P \neg \varphi .
$$

From $\sim P(\varphi \wedge \neg \varphi) \vdash(P \varphi \rightarrow P(\varphi \wedge \neg \varphi)) \leftrightarrow \sim P \varphi$ we obtain

$$
\sim P(\varphi \wedge \neg \varphi) \vdash \sim P \varphi \rightarrow \neg P \varphi \vdash \sim \neg P \varphi \rightarrow P \varphi .
$$

As $\sim \neg P \varphi \rightarrow P \varphi$ and $P \varphi \rightarrow \sim \neg P \varphi$ are inter-derivable, we see that assuming $\sim P(\varphi \wedge \neg \varphi)$ entails that $P \varphi$ is classical.
On the other hand, assuming $P \varphi$ is classical, we can prove that $\sim P(\varphi \wedge \neg \varphi) \leftrightarrow P(\varphi \vee \neg \varphi)$.

Expressing belief function and plausibility axioms

We define a sequence of outer (L^{2}) formulas γ_{n} in propositional letters of the inner language p_{1}, \ldots, p_{n} inductively as follows:

$$
\begin{aligned}
\gamma_{1} & :=B p_{1} \\
\gamma_{n+1} & :=\gamma_{n} \oplus\left(B p_{n+1} \ominus \gamma_{n}\left[B \psi: B\left(\psi \wedge p_{n+1}\right) \mid B \psi \text { atoms of } \gamma_{n}\right]\right)
\end{aligned}
$$

The n-monotonicity axiom

 is expressed by substitution instances of$$
\alpha_{n}:=\gamma_{n} \rightarrow B\left(\bigvee_{i=1}^{n} p_{n}\right) .
$$

Expressing belief function and plausibility axioms

We define sequences of outer (NE) formulas γ_{n}, σ_{n} in propositional letters of the inner language p_{1}, \ldots, p_{n} inductively as follows:

$$
\begin{aligned}
\gamma_{1} & :=B p_{1} \\
\gamma_{n+1} & :=\gamma_{n} \oplus\left(B p_{n+1} \ominus \gamma_{n}\left[B \psi: B\left(\psi \wedge p_{n+1}\right) \mid B \psi \text { atoms of } \gamma_{n}\right]\right) \\
\sigma_{1} & :=P l p_{1} \\
\sigma_{n+1} & :=\sigma_{n} \oplus\left(P l p_{n+1} \ominus \sigma_{n}\left[P l \psi: P l\left(\psi \vee p_{n+1}\right) \mid P l \psi \text { atoms of } \sigma_{n}\right]\right)
\end{aligned}
$$

The n-th belief function and plausibility axioms
are expressed by substitution instances of

$$
\begin{aligned}
& \alpha_{n}:=\gamma_{n} \rightarrow B\left(\bigvee_{i=1}^{n} p_{n}\right) . \\
& \beta_{n}:=\operatorname{Pl}\left(\bigwedge_{i=1}^{n} p_{n}\right) \rightarrow \sigma_{n} .
\end{aligned}
$$

An application: two-layer logics of belief functions and plausibilities

Belief (quantified uncertainty)

- Two-layer logic (BD, M_{b}, E^{2})
- Finite strong completeness w.r.t. intended semantics

$$
\begin{aligned}
& \text { Models: }\left\langle S, \Vdash^{+}, \Vdash^{-}, \text {bel }: \mathcal{P} S \rightarrow[0,1]\right\rangle \\
& \text { Semantics: }|B \varphi|:=\left(\operatorname{bel}\left(|\varphi|^{+}\right), \operatorname{bel}\left(|\varphi|^{-}\right)\right)
\end{aligned}
$$

Modal axioms

$$
\begin{aligned}
M_{b}: & \vdash_{\mathrm{L}^{2}} B \neg \varphi \leftrightarrow \neg B \varphi \quad\left\{\vdash_{\mathrm{L}^{2}} B \varphi \rightarrow B \psi \mid \varphi \vdash_{\mathrm{BD}} \psi\right\} \\
& \left\{\vdash_{\mathrm{L}^{2}} \alpha_{n} \mid n \in N\right\}
\end{aligned}
$$

M.B., S. Frittella, D. Kozhemiachenko, O. Majer, S. Nazari. Reasoning with belief functions over Belnap-Dunn logic. submitted.

An application: two-layer logics of belief functions and plausibilities

Belief and plausibility

- Two-layer logic (BD, M_{b}^{N}, NE)
- Finite strong completeness w.r.t. intended semantics

$$
\begin{aligned}
& \text { Models: }\left\langle S, \Vdash^{+}, 1^{-}, \text {bel, pl : } \mathcal{P} S \rightarrow[0,1]\right\rangle \\
& \text { Semantics: }|B \varphi|:=\left(\operatorname{bel}\left(|\varphi|^{+}\right), \operatorname{pl}\left(|\varphi|^{-}\right)\right) \\
&|P l \varphi|:=\left(\operatorname{pl}\left(|\varphi|^{+}\right), \operatorname{bel}\left(|\varphi|^{-}\right)\right)
\end{aligned}
$$

Modal axioms

$$
\begin{aligned}
M_{b}^{N}: & \vdash_{N \mathrm{NL}} P l \neg \varphi \Leftrightarrow \neg B \varphi \quad\left\{\vdash_{\mathrm{NL}} B \varphi \Rightarrow B \psi, P l \varphi \Longrightarrow P l \psi \mid \varphi \vdash_{\mathrm{BD}} \psi\right\} \\
& \left\{\vdash_{\mathrm{NE}} \alpha_{n}, \vdash_{\mathrm{NL}} \beta_{n} \mid n \in N\right\}
\end{aligned}
$$

M.B., S. Frittella, D. Kozhemiachenko, O. Majer, S. Nazari. Reasoning with belief functions over Belnap-Dunn logic. submitted.

Two-layer logics of comparative uncertainty

- Two-layer logic (BD, $M_{c}, G^{2}(\rightarrow)$)
- Strong completeness w.r.t. intended semantics

Models: $\left\langle S, \Vdash^{+}, \Vdash^{-}, \pi: \mathcal{P} S \rightarrow[0,1]\right\rangle$
Semantics: $|C \varphi|:=\left(\pi\left(|\varphi|^{+}\right), \pi\left(|\varphi|^{-}\right)\right)$

Modal axioms

$$
M_{c}: \quad \vdash_{G^{2}} C \neg \varphi \leftrightarrow \neg C \varphi \quad\left\{\vdash_{G^{2}} C \varphi \rightarrow C \psi \mid \varphi \vdash_{\mathrm{BD}} \psi\right\}
$$

- similarly for ($\mathrm{BD}, M_{c}^{N}, G^{2}(\rightarrow)$)
- bi- G and $G^{2}(\rightarrow)$ can be also used to capture two-layer logics of qualitative uncertainty measures (probabilities):

$$
\varphi \lesssim \psi:=\Delta(B \varphi \rightarrow B \psi)
$$

M.B., S. Frittella, D. Kozhemiachenko, O. Majer, Comparing certainty in contradictory evidence. manuscript.

Additional references

- [Belnap] How a computer should think, New Essays on Belnap-Dunn Logic, 2019.
- [Dunn] Intuitive semantics for first-degree entailments and 'coupled trees'. Philosophical Studies 29(3), 149-168, 1976.
- [Fagin, Halpern, Megiddo] A Logic for Reasoning about Probabilities, Information and Computation 87, 78-128, 1990.
- [Hájek] Metamathematics of Fuzzy Logic, Trends in Logic 1998.
- [Cintula \& Noguera] Modal logics of uncertainty with two-layer syntax: A general completeness theorem, WoLLIC 2014.
- [Baldi, Cintula \& Noguera] Classical and Fuzzy Two-Layered Modal Logics for Uncertainty: Translations and Proof-Theory, International Journal of Computational Intelligence Systems Vol. 13(1), 2020, pp. 988-1001.
- [Nelson] Constructible falsity.The Journal of Symbolic Logic, 14(1):16-26, 1949.
- [Wansing] Constructive negation, implication, and co-implication Journal of Applied Non-Classical Logics 18 (2-3):341-364 (2008).

