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Closure spaces

By a closure space we will mean a pair (A, CA), in which A is a set
and CA a set of subsets of A closed under arbitrary intersections.

We will consider the category CLS of closure spaces, where a
morphism α : A→ B is a map α from A to B with

B ′ ∈ CB ⇒ α−1(B ′) ∈ CA.

A closure space structure CA on a set A can be equivalently
described as a closure operator on the power set P(A) of A written
as X 7→ X (or, more precisely, as X 7→ X

A) and satisfying

X ⊆ X ′ ⇒ X ⊆ X ′, X ⊆ X , X = X .

The relationship between these two types of structures is given by

X =
⋂

X⊆A′∈C
A′ and X ∈ C ⇔ X = X .
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CLS is a topological category

The underlying set functor U : CLS→ Sets is topological and so
we know, in particular, how to construct pullbacks and coequalizers:

Lemma
A pullback in CLS is a diagram of the form

E ×B A

π1
��

π2 // A

α
��

E p
// B

where E ×B A is the set {(e, a) ∈ E × A | p(e) = α(a)}, and

CE×BA = {E ′ ×B A′ = π−1
1 (E ′) ∩ π−1

2 (A′) | E ′ ∈ CE &A′ ∈ CA}.

Lemma
A morphism p : E → B in CLS is a regular epimorphism if and only
if p is a surjective map with CB = {B ′ ⊆ B | p−1(B ′) ∈ CE}.
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Some classes of morphisms in CLS

Proposition
For closure spaces E and B , and a map p : E → B , the following
conditions are equivalent:
(a) p : E → B is a morphism in CLS;
(b) p−1(X ) ⊆ p−1(X ) for every X ⊆ B ;
(c) p(p−1(X )) ⊆ X for every X ⊆ B ;
(d) p(Y ) ⊆ p(Y ) for every Y ⊆ E ;
(e) Y ⊆ p−1(p(Y )) for every Y ⊆ E .

Proposition
The following conditions on a morphism p : E → B in CLS are
equivalent:
(a) p is closed, that is, Y ∈ CE ⇒ p(Y ) ∈ CE ;
(b) p(Y ) ⊇ p(Y ) for every Y ⊆ E ;
(c) p(Y ) = p(Y ) for every Y ⊆ E .

Proposition
The following conditions on a morphism p : E → B in CLS are
equivalent:
(a) p is open, that is, −Y ∈ CE ⇒ −p(Y ) ∈ CB ;
(b) X ⊆ −p(−p−1(X )) for every X ⊆ B ;
(c) p−1(X ) ⊇ p−1(X ) for every X ⊆ B ;
(d) p−1(X ) = p−1(X ) for every X ⊆ B .
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Pullback and pullback stable reg. epim. in CLS

Proposition

Consider again the pullback diagram for (p, α). For Z ⊆ E ×B A
one has Z = π−1

1 (π1(Z )) ∩ π−1
2 (π2(Z )).

Proposition
The following conditions on a morphism p : E → B in CLS are
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(a) p is a pullback stable regular epimorphism;
(b) X ⊆ p(p−1(X )) for every X ⊆ B ;
(c) X = p(p−1(X )) for every X ⊆ B .
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Descent with respect to the basic fibration

For a morphism p : E → B in a category C with pullbacks and
coequalizers of equivalence relations let T p = (T p, ηp, µp) be the
monad induced in C ↓ E by the adjunction

p! a p∗ : C ↓ B → C ↓ E .

Then descent data for p are the T p-algebras and the category of
descent data Des(p) is the Eilenberg-Moore category of algebras
(C ↓ E )T p

.

Let Kp : C ↓ B → (C ↓ E )T = Des(p) be the comparison functor.

Definition
The morphism p : E → B is said to be
- a descent morphism if Kp is fully faithful;
- an effective descent morphism if Kp is a category equivalence,
that is, if p∗ is monadic.
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General results on descent

The left adjoint Lp of Kp is defined by Lp(C , γ, ξ) = (Q, δ) where
q = coeq(ξ, π2) and δ is the induced morphism

E ×B C

E×Bγ
��

ξ //
π2
// C

γ

��

q // Q

δ
��

E ×B E
π1 //
π2
// E p

// B

Proposition
A morphism in C is a descent morphism if and only if it is a
pullback stable regular epimorphism.

A descent morphism in C is an effective descent morphism if and
only if for every descent morphism p : E → B and every diagram as
above, γ is an isomorphism when δ is an isomorphism.
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Descent versus effective descent

In CLS there exist descent morphisms that are not effective descent
if and only if the following situation may occur: for a descent
morphism p there exist a commutative diagram

E ×B E ′

E×Bγ

��

ξ //
π2
// E ′

γ

��

q // B

1B
��

E ×B E
π1 //
π2
// E p

// B

,

(constructed as above) where U(γ) is the identity map and E ′ 6= E .

That is, if
1 the identity map γ : E ′ → E belongs to CLS,
2 there exists descent data (E ′, γ, ξ) for p, and
3 U(q) = U(p).
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Existence of such descent data for p

Lemma
Suppose the identity map 1E : E ′ → E is a morphism in CLS.
Then the following conditions are equivalent:
(a) there exists a descent data for p of the form (E ′, 1E , ξ);
(b) there exists a unique descent data for p of the form (E ′, 1E , ξ);
(c) the triple (E ′, 1E , π1), where π1 : E ×B E ′ → E ′ is defined by

π1(e, e
′) = e, is a descent data for p;

(d) the first projection π1 : E ×B E ′ → E ′ is a morphism in CLS;

(e) Y ∩ p−1(p(p−1(p(Y ))
′
)) ⊆ Y

′ for all Y ⊆ E ;

(f) Y ∩ p−1(p(p−1(p(Y ))
′
)) = Y

′ for all Y ⊆ E ;

(g) Y ∩ p−1(p(p−1(p(Y ))
′
)) ⊆ Y for all Y ∈ CE ′ ;

(h) Y ∩ p−1(p(p−1(p(Y ))
′
)) = Y for all Y ∈ CE ′ .
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Descent = effective descent for finite closure spaces

Lemma
Suppose the equivalent conditions of the previous Lemma are
satisfied and let us write p′ for p considered as a morphism from E ′

to B . If both p and p′ are regular epimorphisms, then, for every
Y ∈ CE ′ \ CE , there exists Y ∗ ∈ CE ′ \ CE with Y ⊂ Y ∗. In
particular, if CE ′ 6= CE , then E is infinite.

Theorem
Every descent morphism in the category FCLS of finite closure
spaces is an effective descent morphism.
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Preorders as closure spaces

Preord→ Top→ CLS,

are full inclusions where Preord is the category of preordered sets
and Top is the category of topological spaces.
Considering a preorder B as either a topological space or a closure
space, for any X ⊆ B , we have

X = ↑X = {b ∈ B | x 6 b for some x ∈ X}.

Proposition
A morphism in Preord is a descent morphism in Preord if and only
if it is a descent morphism in CLS.

Descent does not coincide with effective descent in Preord, not
even in FPreord where we have FPreord ∼ FTop→ FCLS.
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A non-effective descent morphism

Let p : E → B be the morphism in FPreord, where
B = {b1, b2, b3} is the ordered set with b1 < b2 < b3.
E = {e1, e2−, e2+, e3} is the ordered set with e1 < e2−,
e2+ < e3, e1 < e3.
p(e1) = b1, p(e2−) = b2 = p(e2+), and p(e3) = b3.

For E ′ = {e1, e2−, e2+, e3} with e1 < e2−, e2+ < e3, the pullback
E ×B E ′ can be presented as the diagram

(e1, e1)

uu
(e2−, e2−) (e2−, e2+) (e2+, e2−) (e2+, e2+)

uu
(e3, e3)

.

Then p is a non-effective descent morphism.



And for the corresponding closure spaces?

The first projection π1 : E ×B E ′ → E ′ is not a morphism in CLS.

The set Y = {e1, e2−} is closed in E ′ and

Z = π−1
1 (Y ) = {(e1, e1), (e2−, e2−), (e2−, e2+)},

is obviously closed in the pullback E ×B E ′ in Preorder but not in
the pullback E ×B E ′ in FCLS: there Z 6= Z :

Z = π−1
1 (π1(Z ))∩π−1

2 (π2(Z )
′
) = π−1

1 ({e1, e2−})∩π−1
2 ({e1, e2−, e2+}

′
)

= π−1
1 ({e1, e2−, e3}) ∩ π−1

2 ({e1, e2−, e2+, e3}) = π−1
1 ({e1, e2−, e3})

= {(e1, e1), (e2−, e2−), (e2−, e2+), (e3, e3)} 6= Z .

Furthermore, in the pullback E ×B E ′ in FCLS, putting Z = U ∪V
with U = {(e1, e1), (e2−, e2−)} and V = {(e2−, e2+)},

U = U and V = V , while U ∪ V 6= U ∪ V ,

which is what could not happen in a preorder (since it could not
happen in a topological space in general).
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Connections with “strict monadic topology"

What we call “strict monadic topology” generalizes the category of
compact Hausdorff spaces by replacing it with the category Alg(T )
of algebras over an arbitrary monad T over the category of sets,
and developing counterparts of topological notions in Alg(T ).

Since every T -algebra has the canonical structure of a closure
space, where closed subsets are all T -subalgebras, we immediately
obtain the underlying closure space functor U : Alg(T )→ CLS
that is always faithful, but almost never full.

This functor has unusual preservation properties: it preserves, say,
equalizers and coequalizers, but almost no others limits and
colimits (e.g. not non-empty products and coproducts in general).

However, it turns out that it preserves and reflects descent and
effective descent morphisms: since Alg(T ) is Barr exact, to prove
that is just to prove that every surjective closed map of closure
spaces is an effective descent morphism in CLS.
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Surjective closed maps are effective descent morphisms

The result easily follows from a simple closure-space-variation of an
old result of W. Tholen and M.S. (1991):

Theorem
A regular epimorphism p in a category C with pullbacks and
coequalizers of equivalence relations is an effective descent
morphism if and only if, for every T p-algebra (C , γ, ξ) the
equivalence relation (π2, ξ) is effective and its coequalizer is a
pullback stable regular epimorphism

We also proved there that the equivalence relation (π2, ξ) is
effective if and only if the left adjoint Lp of the comparison functor
Kp is faithful, which is always the case in topological categories like
CLS.



Surjective closed maps are effective descent morphisms

So, a regular epimorphism p in CLS is an effective descent
morphism if and only if, for every T p-algebra (C , γ, ξ) the
coequalizer of (π2, ξ) is a pullback stable regular epimorphism.

We have that

Lemma
The class of closed maps is pullback stable.

and from that we conclude the desired result:

Theorem
The surjective closed maps are effective descent morphisms.

We remark that the same holds for (surjective) open maps.
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