The Dependence-Problem in Varieties of Modal Semilattices

Naomi Tokuda

University of Bern

June 24, 2022

De Jongh and Chagrova¹ call formulas $\varphi_1, \ldots, \varphi_n$ of intuitionistic logic dependent whenever for some formula ψ in the variables y_1, \ldots, y_n ,

 $\vdash_{\mathsf{IPC}} \psi(\varphi_1, \dots, \varphi_n), \text{ but } \nvDash_{\mathsf{IPC}} \psi(y_1, \dots, y_n).$

¹D. de Jongh and L. A. Chagrova, "The decidability of dependency in intuitionistic propositional logic", Journal of Symbolic Logic **60**, 498–504 (1995).

De Jongh and Chagrova¹ call formulas $\varphi_1, \ldots, \varphi_n$ of intuitionistic logic dependent whenever for some formula ψ in the variables y_1, \ldots, y_n ,

 $\vdash_{\mathsf{IPC}} \psi(\varphi_1, \dots, \varphi_n), \text{ but } \nvDash_{\mathsf{IPC}} \psi(y_1, \dots, y_n).$

Using Pitts' constructive proof of uniform interpolation for IPC, they also showed that the dependence of finitely many formulas is decidable.

¹D. de Jongh and L. A. Chagrova, "The decidability of dependency in intuitionistic propositional logic", Journal of Symbolic Logic **60**, 498–504 (1995).

For modal logic K, the proof for IPC cannot be applied, but it follows from results on uniform interpolation in description logic by Lutz and Wolter², that the same question for K is decidable.

Naomi Tokuda (University of Bern)

²C. Lutz and F. Wolter, "Foundations for uniform interpolation and forgetting in expressive description logics", Proc. IJCAI 2011, 989–995 (2011).

³S. Kikot et al., "Kripke completeness of strictly positive modal logics over meet-semilattices with operators", The Journal of Symbolic Logic **84**, 533–588 (2019).

For modal logic K, the proof for IPC cannot be applied, but it follows from results on uniform interpolation in description logic by Lutz and Wolter², that the same question for K is decidable.

The fact that the dependence of finitely many formulas is decidable for K does not imply that it is decidable whether finitely many formulas for any fragment of K are dependent.

 $^{^{2}}$ C. Lutz and F. Wolter, "Foundations for uniform interpolation and forgetting in expressive description logics", Proc. IJCAI 2011, 989–995 (2011).

³S. Kikot et al., "Kripke completeness of strictly positive modal logics over meet-semilattices with operators", The Journal of Symbolic Logic **84**, 533–588 (2019).

For modal logic K, the proof for IPC cannot be applied, but it follows from results on uniform interpolation in description logic by Lutz and Wolter², that the same question for K is decidable.

The fact that the dependence of finitely many formulas is decidable for K does not imply that it is decidable whether finitely many formulas for any fragment of K are dependent.

In this talk we consider two of these fragments algebraically. Structures like these are considered for example by Kikot et al³. These fragments are also relevant when considering weaker description logics.

 $^2\text{C}.$ Lutz and F. Wolter, "Foundations for uniform interpolation and forgetting in expressive description logics", Proc. IJCAI 2011, 989–995 (2011).

³S. Kikot et al., "Kripke completeness of strictly positive modal logics over meet-semilattices with operators", The Journal of Symbolic Logic **84**, 533–588 (2019).

Naomi Tokuda (University of Bern)

Let \mathcal{L} be an algebraic language and let \mathcal{V} be a variety (equational class) of \mathcal{L} -algebras. By $\operatorname{Tm}(\bar{x})$ and $\operatorname{Eq}(\bar{x})$, we denote the sets of \mathcal{L} -terms and \mathcal{L} -equations over the set of variables \bar{x} , respectively.

Let \mathcal{L} be an algebraic language and let \mathcal{V} be a variety (equational class) of \mathcal{L} -algebras. By $\operatorname{Tm}(\bar{x})$ and $\operatorname{Eq}(\bar{x})$, we denote the sets of \mathcal{L} -terms and \mathcal{L} -equations over the set of variables \bar{x} , respectively. Then we define

$$\mathcal{V} \vDash s \approx t \quad :\iff \quad f(s) = f(t) \text{ for all } \mathbf{A} \in \mathcal{V} \text{ and all}$$

homomorphisms f from $\mathbf{Tm}(\bar{x})$ to \mathbf{A} .

Let \mathcal{L} be an algebraic language and let \mathcal{V} be a variety (equational class) of \mathcal{L} -algebras. By $\operatorname{Tm}(\bar{x})$ and $\operatorname{Eq}(\bar{x})$, we denote the sets of \mathcal{L} -terms and \mathcal{L} -equations over the set of variables \bar{x} , respectively. Then we define

$$\mathcal{V} \vDash s \approx t \quad :\iff \quad f(s) = f(t) \text{ for all } \mathbf{A} \in \mathcal{V} \text{ and all}$$

homomorphisms f from $\mathbf{Tm}(\bar{x})$ to \mathbf{A} .

For $\Sigma \subseteq \text{Eq}(\bar{x})$, we write $\mathcal{V} \models \Sigma$, whenever $\mathcal{V} \models s \approx t$ for all $s \approx t \in \Sigma$.

 $^{4}\text{E.}$ Marczewski, "A general scheme of the notions of independence in mathematics", Bull. Acad. Polon. Sci. 6, 731–736 (1958).

Then t_1, \ldots, t_n are called \mathcal{V} -dependent if there is an equation $\varepsilon(y_1, \ldots, y_n)$ such that

 $\mathcal{V} \vDash \varepsilon(t_1, \ldots, t_n)$ but $\mathcal{V} \nvDash \varepsilon(y_1, \ldots, y_n)$.

⁴E. Marczewski, "A general scheme of the notions of independence in mathematics", Bull. Acad. Polon. Sci. **6**, 731–736 (1958).

Then t_1, \ldots, t_n are called \mathcal{V} -dependent if there is an equation $\varepsilon(y_1, \ldots, y_n)$ such that

 $\mathcal{V} \vDash \varepsilon(t_1, \ldots, t_n)$ but $\mathcal{V} \nvDash \varepsilon(y_1, \ldots, y_n)$.

The problem of deciding whether any finite number of \mathcal{L} -terms are \mathcal{V} -dependent is called the dependence problem for \mathcal{V} .

 $^{^{4}\}text{E.}$ Marczewski, "A general scheme of the notions of independence in mathematics", Bull. Acad. Polon. Sci. 6, 731–736 (1958).

Then t_1, \ldots, t_n are called \mathcal{V} -dependent if there is an equation $\varepsilon(y_1, \ldots, y_n)$ such that

 $\mathcal{V} \vDash \varepsilon(t_1, \ldots, t_n)$ but $\mathcal{V} \nvDash \varepsilon(y_1, \ldots, y_n)$.

The problem of deciding whether any finite number of \mathcal{L} -terms are \mathcal{V} -dependent is called the dependence problem for \mathcal{V} .

 $\mathcal V\text{-}dependence$ corresponds to a special case of a notion of dependence studied by Marczewski^4 and others.

⁴E. Marczewski, "A general scheme of the notions of independence in mathematics", Bull. Acad. Polon. Sci. **6**, 731–736 (1958).

A set $\Delta \subseteq Eq(\bar{y})$ is called \mathcal{V} -refuting for \bar{y} , if the following hold:

A set $\Delta \subseteq Eq(\bar{y})$ is called \mathcal{V} -refuting for \bar{y} , if the following hold:

1. For each $\delta \in \Delta$, $\mathcal{V} \nvDash \delta$;

A set $\Delta \subseteq Eq(\bar{y})$ is called \mathcal{V} -refuting for \bar{y} , if the following hold:

1. For each
$$\delta \in \Delta$$
, $\mathcal{V} \nvDash \delta$;

2. For any equation $\varepsilon(\bar{y})$, such that $\mathcal{V} \nvDash \varepsilon$, and any substitution $\sigma \colon \mathbf{Tm}(\bar{y}) \to \mathbf{Tm}(\omega)$,

$$\mathcal{V}\vDash \sigma(\varepsilon) \quad \Longrightarrow \quad \mathcal{V}\vDash \sigma(\delta) \text{ for some } \delta\in \Delta,$$

where σ is extended to equations by setting $\sigma(s \approx t) = \sigma(s) \approx \sigma(t)$.

Lemma

For any \mathcal{V} -refuting set $\Delta(\bar{y})$ for $\bar{y} = \{y_1, \ldots, y_n\}$, the terms $t_1, \ldots, t_n \in \operatorname{Tm}(\bar{x})$ are \mathcal{V} -dependent if and only if $\mathcal{V} \vDash \delta(t_1, \ldots, t_n)$ for some $\delta \in \Delta$.

Lemma

For any \mathcal{V} -refuting set $\Delta(\bar{y})$ for $\bar{y} = \{y_1, \ldots, y_n\}$, the terms $t_1, \ldots, t_n \in \mathrm{Tm}(\bar{x})$ are \mathcal{V} -dependent if and only if $\mathcal{V} \vDash \delta(t_1, \ldots, t_n)$ for some $\delta \in \Delta$.

Thus, for varieties that have a decidable equational theory and for which a finite \mathcal{V} -refuting set for any finite \bar{y} can be constructed, the dependence problem is decidable.

 5 G. Metcalfe and N. Tokuda, "Deciding dependence in logic and algebra", to appear in a volume of Springer's series on Outstanding Contributions to Logic dedicated to Dick de Jongh.

Naomi Tokuda (University of Bern)

We define $[n] \coloneqq \{1, \ldots, n\}$. Let us consider $\mathcal{L}at$, the variety of all lattices, and let

 $^{^{5}}$ G. Metcalfe and N. Tokuda, "Deciding dependence in logic and algebra", to appear in a volume of Springer's series on Outstanding Contributions to Logic dedicated to Dick de Jongh.

We define $[n] := \{1, \ldots, n\}$. Let us consider $\mathcal{L}at$, the variety of all lattices, and let

$$\Delta_n \coloneqq \left\{ y_i \leq \bigvee_{j \in [n] \setminus \{i\}} y_j \mid i \in [n] \right\} \cup \left\{ \bigwedge_{j \in [n] \setminus \{i\}} y_j \leq y_i \mid i \in [n] \right\}.$$

Naomi Tokuda (University of Bern)

 $^{^{5}}$ G. Metcalfe and N. Tokuda, "Deciding dependence in logic and algebra", to appear in a volume of Springer's series on Outstanding Contributions to Logic dedicated to Dick de Jongh.

We define $[n] := \{1, \ldots, n\}$. Let us consider $\mathcal{L}at$, the variety of all lattices, and let

$$\Delta_n \coloneqq \Big\{ y_i \leq \bigvee_{j \in [n] \setminus \{i\}} y_j \mid i \in [n] \Big\} \cup \Big\{ \bigwedge_{j \in [n] \setminus \{i\}} y_j \leq y_i \mid i \in [n] \Big\}.$$

We can show that Δ_n is a $\mathcal{L}at$ -refuting set for $\{y_1, \ldots, y_n\}$ and thus, the dependence problem for $\mathcal{L}at$ is decidable.

Naomi Tokuda (University of Bern)

 $^{^5} G.$ Metcalfe and N. Tokuda, "Deciding dependence in logic and algebra", to appear in a volume of Springer's series on Outstanding Contributions to Logic dedicated to Dick de Jongh.

Let \mathcal{MJS} be the variety of $\langle \lor, \Box \rangle$ -algebras $\langle A, \lor, \Box \rangle$ such that $\langle A, \lor \rangle$ is a semilattice and for all $a, b \in A$,

 $\Box a \vee \Box b \leq \Box (a \vee b).$

Let \mathcal{MJS} be the variety of $\langle \lor, \Box \rangle$ -algebras $\langle A, \lor, \Box \rangle$ such that $\langle A, \lor \rangle$ is a semilattice and for all $a, b \in A$,

$$\Box a \lor \Box b \le \Box (a \lor b).$$

For notational convenience, we write for a term $s, \emptyset \lor s = s \lor \emptyset = s$.

Lemma

The following set of MJS-inequations in \bar{y} is MJS-refuting for \bar{y} :

$$\begin{split} \Delta_{\bar{y}} &\coloneqq \{ y \leq s \mid y \in \bar{y} \text{ and } s \neq s_1 \lor y \lor s_2 \text{ for } s_1, s_2 \in \mathrm{Tm}(\bar{y}) \cup \{ \varnothing \} \} \\ &\cup \{ \Box^k y \leq y' \mid y, y' \in \bar{y} \text{ and } k > 0 \}. \end{split}$$

We prove this by giving a procedure that for any inequation ε not valid in \mathcal{MJS} yields a finite set $\Delta_{\varepsilon} \subseteq \Delta_{\bar{y}}$ such that for any substitution σ ,

$$\mathcal{MJS}\vDash \sigma(\varepsilon) \implies \mathcal{MJS}\vDash \sigma(\delta) \text{ for some } \delta \in \Delta_{\varepsilon}.$$

We prove this by giving a procedure that for any inequation ε not valid in \mathcal{MJS} yields a finite set $\Delta_{\varepsilon} \subseteq \Delta_{\bar{y}}$ such that for any substitution σ ,

$$\mathcal{MJS}\vDash \sigma(\varepsilon) \implies \mathcal{MJS}\vDash \sigma(\delta) \text{ for some } \delta \in \Delta_{\varepsilon}.$$

To show the idea, we consider an example. Let $\varepsilon = \Box^2 y_1 \leq \Box (y_2 \vee \Box y_3)$.

We prove this by giving a procedure that for any inequation ε not valid in \mathcal{MJS} yields a finite set $\Delta_{\varepsilon} \subseteq \Delta_{\bar{y}}$ such that for any substitution σ ,

$$\mathcal{MJS}\vDash \sigma(\varepsilon) \implies \mathcal{MJS}\vDash \sigma(\delta) \text{ for some } \delta \in \Delta_{\varepsilon}.$$

To show the idea, we consider an example. Let $\varepsilon = \Box^2 y_1 \leq \Box (y_2 \vee \Box y_3)$. Clearly, $\mathcal{MJS} \nvDash \varepsilon$ and $\mathcal{MJS} \nvDash \Box y_1 \leq y_2 \vee \Box y_3$.

We prove this by giving a procedure that for any inequation ε not valid in \mathcal{MJS} yields a finite set $\Delta_{\varepsilon} \subseteq \Delta_{\bar{y}}$ such that for any substitution σ ,

$$\mathcal{MJS}\vDash \sigma(\varepsilon) \implies \mathcal{MJS}\vDash \sigma(\delta) \text{ for some } \delta \in \Delta_{\varepsilon}.$$

To show the idea, we consider an example. Let $\varepsilon = \Box^2 y_1 \leq \Box (y_2 \vee \Box y_3)$. Clearly, $\mathcal{MJS} \nvDash \varepsilon$ and $\mathcal{MJS} \nvDash \Box y_1 \leq y_2 \vee \Box y_3$. If $\mathcal{MJS} \vDash \Box^2 \sigma(y_1) \leq \Box(\sigma(y_2) \vee \Box \sigma(y_3))$, then also $\mathcal{MJS} \vDash \Box \sigma(y_1) \leq \sigma(y_2) \vee \Box \sigma(y_3)$.

We prove this by giving a procedure that for any inequation ε not valid in \mathcal{MJS} yields a finite set $\Delta_{\varepsilon} \subseteq \Delta_{\bar{y}}$ such that for any substitution σ ,

$$\mathcal{MJS}\vDash \sigma(\varepsilon) \implies \mathcal{MJS}\vDash \sigma(\delta) \text{ for some } \delta \in \Delta_{\varepsilon}.$$

To show the idea, we consider an example. Let $\varepsilon = \Box^2 y_1 \leq \Box(y_2 \vee \Box y_3)$. Clearly, $\mathcal{MJS} \nvDash \varepsilon$ and $\mathcal{MJS} \nvDash \Box y_1 \leq y_2 \vee \Box y_3$. If $\mathcal{MJS} \vDash \Box^2 \sigma(y_1) \leq \Box(\sigma(y_2) \vee \Box \sigma(y_3))$, then also $\mathcal{MJS} \vDash \Box \sigma(y_1) \leq \sigma(y_2) \vee \Box \sigma(y_3)$. Now, either $\mathcal{MJS} \vDash \sigma(y_1) \leq \sigma(y_3)$ or $\mathcal{MJS} \vDash \sigma(y_1) \leq s_2$ where

 $\sigma(y_2) = s_1 \vee \Box s_2 \vee s_3$ for $s_2 \in \operatorname{Tm}(\bar{y})$ and $s_1, s_3 \in \operatorname{Tm}(\bar{y}) \cup \{\varnothing\}$. In the second case, we get $\mathcal{MJS} \models \Box \sigma(y_1) \leq \sigma(y_2)$.

We prove this by giving a procedure that for any inequation ε not valid in \mathcal{MJS} yields a finite set $\Delta_{\varepsilon} \subseteq \Delta_{\bar{y}}$ such that for any substitution σ ,

$$\mathcal{MJS}\vDash \sigma(\varepsilon) \implies \mathcal{MJS}\vDash \sigma(\delta) \text{ for some } \delta \in \Delta_{\varepsilon}.$$

To show the idea, we consider an example. Let $\varepsilon = \Box^2 y_1 \leq \Box(y_2 \vee \Box y_3)$. Clearly, $\mathcal{MJS} \nvDash \varepsilon$ and $\mathcal{MJS} \nvDash \Box y_1 \leq y_2 \vee \Box y_3$. If $\mathcal{MJS} \vDash \Box^2 \sigma(y_1) \leq \Box(\sigma(y_2) \vee \Box \sigma(y_3))$, then also $\mathcal{MJS} \vDash \Box \sigma(y_1) \leq \sigma(y_2) \vee \Box \sigma(y_3)$. Now, either $\mathcal{MJS} \vDash \sigma(y_1) \leq \sigma(y_3)$ or $\mathcal{MJS} \vDash \sigma(y_1) \leq s_2$ where

 $\sigma(y_2) = s_1 \vee \Box s_2 \vee s_3$ for $s_2 \in \operatorname{Tm}(\bar{y})$ and $s_1, s_3 \in \operatorname{Tm}(\bar{y}) \cup \{\varnothing\}$. In the second case, we get $\mathcal{MJS} \models \Box \sigma(y_1) \leq \sigma(y_2)$.

Also, $\mathcal{MJS} \nvDash \Box y_1 \leq y_2$ and $\mathcal{MJS} \nvDash y_1 \leq y_3$.

We prove this by giving a procedure that for any inequation ε not valid in \mathcal{MJS} yields a finite set $\Delta_{\varepsilon} \subseteq \Delta_{\bar{y}}$ such that for any substitution σ ,

$$\mathcal{MJS}\vDash \sigma(\varepsilon) \implies \mathcal{MJS}\vDash \sigma(\delta) \text{ for some } \delta \in \Delta_{\varepsilon}.$$

To show the idea, we consider an example. Let $\varepsilon = \Box^2 y_1 \leq \Box(y_2 \vee \Box y_3)$. Clearly, $\mathcal{MJS} \nvDash \varepsilon$ and $\mathcal{MJS} \nvDash \Box y_1 \leq y_2 \vee \Box y_3$. If $\mathcal{MJS} \vDash \Box^2 \sigma(y_1) \leq \Box(\sigma(y_2) \vee \Box \sigma(y_3))$, then also $\mathcal{MJS} \vDash \Box \sigma(y_1) \leq \sigma(y_2) \vee \Box \sigma(y_3)$. Now, either $\mathcal{MJS} \vDash \sigma(y_1) < \sigma(y_3)$ or $\mathcal{MJS} \vDash \sigma(y_1) < s_2$ where

 $\sigma(y_2) = s_1 \vee \Box s_2 \vee s_3 \text{ for } s_2 \in \operatorname{Tm}(\bar{y}) \text{ and } s_1, s_3 \in \operatorname{Tm}(\bar{y}) \cup \{\varnothing\}. \text{ In the second case, we get } \mathcal{MJS} \vDash \Box \sigma(y_1) \leq \sigma(y_2).$

Also, $\mathcal{MJS} \nvDash \Box y_1 \leq y_2$ and $\mathcal{MJS} \nvDash y_1 \leq y_3$. Thus,

$$\Delta_{\varepsilon} = \{ \Box y_1 \le y_2, y_1 \le y_3 \}.$$

Let md(t) denote the modal depth of the term t and define $md(s \le t) = max\{md(s), md(t)\}$ for the inequation $s \le t$.

Let md(t) denote the modal depth of the term t and define $md(s \le t) = max\{md(s), md(t)\}$ for the inequation $s \le t$.

Theorem

Let $t_1, \ldots, t_n \in \text{Tm}(\bar{x})$ and let $\bar{y} = \{y_1, \ldots, y_n\}$. Then t_1, \ldots, t_n are \mathcal{MJS} -dependent if and only if there is an inequation $\delta \in \Delta_{\bar{u}}^d$ such that

$$\mathcal{MJS} \vDash \delta(t_1,\ldots,t_n),$$

where $d \coloneqq \max\{ \operatorname{md}(t_1), \ldots, \operatorname{md}(t_n) \}$ and $\Delta_{\bar{y}}^d \coloneqq \{ \delta \in \Delta_{\bar{y}} \mid \operatorname{md}(\delta) \leq d \}.$

Let md(t) denote the modal depth of the term t and define $md(s \le t) = max\{md(s), md(t)\}$ for the inequation $s \le t$.

Theorem

Let $t_1, \ldots, t_n \in \text{Tm}(\bar{x})$ and let $\bar{y} = \{y_1, \ldots, y_n\}$. Then t_1, \ldots, t_n are \mathcal{MJS} -dependent if and only if there is an inequation $\delta \in \Delta_{\bar{u}}^d$ such that

$$\mathcal{MJS} \vDash \delta(t_1,\ldots,t_n),$$

where $d \coloneqq \max\{ \operatorname{md}(t_1), \ldots, \operatorname{md}(t_n) \}$ and $\Delta_{\bar{y}}^d \coloneqq \{ \delta \in \Delta_{\bar{y}} \mid \operatorname{md}(\delta) \leq d \}.$

Corollary

The dependence problem for \mathcal{MJS} is decidable.

Let \mathcal{MMS} be the variety of $\langle \wedge, \Box \rangle$ -algebras $\langle A, \wedge, \Box \rangle$ such that $\langle A, \wedge \rangle$ is a semilattice and for all $a, b \in A$,

 $\Box a \land \Box b = \Box (a \land b).$

Let \mathcal{MMS} be the variety of $\langle \wedge, \Box \rangle$ -algebras $\langle A, \wedge, \Box \rangle$ such that $\langle A, \wedge \rangle$ is a semilattice and for all $a, b \in A$,

$$\Box a \land \Box b = \Box (a \land b).$$

 $\mathbf{F}(\bar{x})$, the free \mathcal{MMS} -algebra over m > 0 generators is isomorphic to the following \mathcal{MMS} -algebra:

 $\langle (\mathcal{P}_{fin}(\mathbb{N}))^m \setminus \{ \langle \varnothing, \ldots, \varnothing \rangle \}, \cup, \Box \rangle,$

Let \mathcal{MMS} be the variety of $\langle \wedge, \Box \rangle$ -algebras $\langle A, \wedge, \Box \rangle$ such that $\langle A, \wedge \rangle$ is a semilattice and for all $a, b \in A$,

$$\Box a \land \Box b = \Box (a \land b).$$

 $\mathbf{F}(\bar{x})$, the free \mathcal{MMS} -algebra over m > 0 generators is isomorphic to the following \mathcal{MMS} -algebra:

$$\langle (\mathcal{P}_{fin}(\mathbb{N}))^m \setminus \{ \langle \varnothing, \dots, \varnothing \rangle \}, \cup, \Box \rangle, \rangle$$

where $\mathcal{P}_{fin}(\mathbb{N})$ is the set of all finite subsets of \mathbb{N} , and \cup, \Box are defined component-wise with $\Box\{a_1, \ldots, a_k\} \coloneqq \{a_1 + 1, \ldots, a_k + 1\}$ for $a_1, \ldots, a_k \in \mathbb{N}$.

Let us consider the MMS-terms $t_1, \ldots, t_n \in Tm(\bar{x})$. The following are equivalent:

Let us consider the MMS-terms $t_1, \ldots, t_n \in Tm(\bar{x})$. The following are equivalent:

1. t_1, \ldots, t_n are \mathcal{MMS} -dependent.

Let us consider the MMS-terms $t_1, \ldots, t_n \in Tm(\bar{x})$. The following are equivalent:

- 1. t_1, \ldots, t_n are \mathcal{MMS} -dependent.
- 2. There is an $i \in \{1, ..., n\}$ such that for each variable x occurring in t_i one of the following holds:

Let us consider the MMS-terms $t_1, \ldots, t_n \in Tm(\bar{x})$. The following are equivalent:

- 1. t_1, \ldots, t_n are \mathcal{MMS} -dependent.
- 2. There is an $i \in \{1, ..., n\}$ such that for each variable x occurring in t_i one of the following holds:

(a) $[t_i] = [\Box^k x \wedge \Box^l x \wedge t'_i] \in \mathbf{F}(\bar{x})$, where $k \neq l$.

Let us consider the MMS-terms $t_1, \ldots, t_n \in Tm(\bar{x})$. The following are equivalent:

- 1. t_1, \ldots, t_n are \mathcal{MMS} -dependent.
- 2. There is an $i \in \{1, ..., n\}$ such that for each variable x occurring in t_i one of the following holds:
 - (a) $[t_i] = [\Box^k x \wedge \Box^l x \wedge t'_i] \in \mathbf{F}(\bar{x})$, where $k \neq l$.
 - (b) There is a $j \in \{1, ..., n\} \setminus \{i\}$ such that x also occurs in t_j .

Let us consider the MMS-terms $t_1, \ldots, t_n \in Tm(\bar{x})$. The following are equivalent:

- 1. t_1, \ldots, t_n are \mathcal{MMS} -dependent.
- 2. There is an $i \in \{1, ..., n\}$ such that for each variable x occurring in t_i one of the following holds:
 - (a) $[t_i] = [\Box^k x \wedge \Box^l x \wedge t'_i] \in \mathbf{F}(\bar{x})$, where $k \neq l$.
 - (b) There is a $j \in \{1, ..., n\} \setminus \{i\}$ such that x also occurs in t_j .

Corollary

The dependence problem for \mathcal{MMS} is decidable.

• Consider the dependence problem for the varieties of modal join-semilattices and modal meet-semilattices with additional assumptions, such as $\Box x \leq x$ or $\Box x \leq \Box \Box x$.

- Consider the dependence problem for the varieties of modal join-semilattices and modal meet-semilattices with additional assumptions, such as $\Box x \leq x$ or $\Box x \leq \Box \Box x$.
- Prove that for \mathcal{MDL} , the variety of modal distributive lattices, the dependence problem is decidable.

- Consider the dependence problem for the varieties of modal join-semilattices and modal meet-semilattices with additional assumptions, such as $\Box x \leq x$ or $\Box x \leq \Box \Box x$.
- Prove that for \mathcal{MDL} , the variety of modal distributive lattices, the dependence problem is decidable.
- Find an alternative proof that the dependence problem for \mathcal{MA} , the variety of modal algebras, is decidable.

- Consider the dependence problem for the varieties of modal join-semilattices and modal meet-semilattices with additional assumptions, such as $\Box x \leq x$ or $\Box x \leq \Box \Box x$.
- Prove that for \mathcal{MDL} , the variety of modal distributive lattices, the dependence problem is decidable.
- Find an alternative proof that the dependence problem for \mathcal{MA} , the variety of modal algebras, is decidable.
- Are there varieties with a decidable equational theory, for which the dependence problem is undecidable?

References

- ¹D. de Jongh and L. A. Chagrova, "The decidability of dependency in intuitionistic propositional logic", Journal of Symbolic Logic **60**, 498–504 (1995).
- ²C. Lutz and F. Wolter, "Foundations for uniform interpolation and forgetting in expressive description logics", Proc. IJCAI 2011, 989–995 (2011).
- ³S. Kikot, A. Kurucz, Y. Tanaka, F. Wolter, and M. Zakharyaschev, "Kripke completeness of strictly positive modal logics over meet-semilattices with operators", The Journal of Symbolic Logic 84, 533–588 (2019).
- ⁴E. Marczewski, "A general scheme of the notions of independence in mathematics", Bull. Acad. Polon. Sci. **6**, 731–736 (1958).
- ⁵G. Metcalfe and N. Tokuda, "Deciding dependence in logic and algebra", to appear in a volume of Springer's series on Outstanding Contributions to Logic dedicated to Dick de Jongh.