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Projectivity (algebraic)

Given a class K of algebras, an algebra A ∈ K is projective in K if for all
B,C ∈ K

A C

B

h

g
f

An algebra B is a retract of an algebra A if there is an epimorphism
g : A 7−→ B and a homomorphism f : B 7−→ A with gf = idB (and thus
f is necessarily injective).

In (quasi)varieties projective algebras = retracts of free algebras
(Whitman).
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Projectivity (categorical)

In algebraic categories surjective homomorphisms = regular epis.

Thus projective in a variety of algebras = (regular) projective in the
associated algebraic category.

Hence projectivity is a property of the objects preserved by categorical
equivalence.

A finitely presented algebra A in a variety V is a quotient of a finitely
generated free algebra FV(n) by a compact congruence θ, i.e.
A ∼= FV(n)/θ.

Being finitely presented and being finitely generated are preserved by
categorical equivalences in algebraic categories (Gabriel, Ulmer).
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Some examples of success

In general determining the projective algebras in a variety is a difficult
problem. However

• (Nation) a finite lattice is projective in the variety of all lattices if
and only if it semidistributive and satisfies Whitman’s condition (W);

• (Balbes) a finite distributive lattice is projective in the variety of
distributive lattices if and only if the meet of any two meet
irreducible elements is again meet irreducible;

• (Balbes) a Boolean algebra is projective in the variety of distributive
lattices if and only if it is finite ; hence every finite Boolean algebra
is projective in the variety of Boolean algebras;

• (folklore) an abelian group is projective in the variety of abelian
groups if and only if it is free;

• (Beynon) a finitely generated abelian `-group is projective in the
variety of abelian `-groups if and only if it is finitely presented.
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The mandatory slide

A commutative and integral residuated lattice (a CIRL) is an algebra
〈A,∨,∧, ·,→, 1〉 such that

1 〈A,∨,∧, 1〉 is a lattice with a top element 1;
2 〈A, ·, 1〉 is a commutative monoid;
3 (·,→) form a residuated pair w.r.t. the lattice ordering, i.e. for all

a, b, c ∈ A

ab ≤ c if and only if a ≤ b → c .

FLew-algebras are bounded CIRLs: they have an extra constant 0 that is
the least element of the lattice.
The variety of FLew-algebras is the equivalent algebraic semantics of the
Full Lambek calculus with the structural rules of exchange and weakening.
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FLew -algebras

For several interesting classes of FLew -algebras “finitely presented” =
“finitely generated projective”:
• Boolean algebras (Balbes)
• Gödel algebras (D’Antona and Marra, Ghilardi)

However
• Finite projective Heyting algebras are ordinal sums of 2 and 4 (and

the last summand is 2) (Balbes and Horn);
• Finitely generated projective `-groups with strong unit (equiv.,

MV-algebras) are finitely presented (Cabrer and Mundici) but not all
the finitely presented, since;

• The only finite projective MV-algebra is 2 (Di Nola- Grigolia
-Lettieri).

In fact:
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Theorem
(A.-Ugolini) The only finite projective FLew algebra is 2.

Proof.
(Sketch)

If V is a subvariety of FLew that is closed under ordinal sums, then any
finite projective algebra in V is subdirectly irreducible (A. - Ugolini).

Projective + subdirectly irreducible = splitting (McKenzie for varieties of
lattices, same proof holds in general).

Thus a finite projective algebra in FLew is splitting.

The only splitting algebra in FLew is 2 (Kowalski-Ono).

But, as the free algebra over the empty set, 2 is projective in every
variety of FLew -algebras, and the thesis follows.
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Hoops

There are two equations in the language of CIRLs that bear interesting
consequences, i.e.

(x → y) ∨ (y → x) ≈ 1. (prel)
x(x → y) ≈ y(y → x); (div)

A subvariety of FLew satisfies the prelinearity equation (prel) if and only if
any algebra therein is a subdirect product of totally ordered algebras (and
this implies via the classic Birkhoff’s result that all the subdirectly
irreducible algebras are totally ordered).
If a variety satisfies the divisibility condition (div) then the lattice
ordering becomes the inverse divisibility ordering: for any algebra A
therein and for all a, b ∈ A

a ≤ b if and only if there is c ∈ A with a = bc.

Moreover it can be easily shown that a(a→ b) = a ∧ b.

Paolo Aglianò Sara Ugolini agliano@live.com sara@iiia.csic.es https://arxiv.org/abs/2008.13181Projectivity in (bounded) commutative integral residuated lattices



Hoops

There are two equations in the language of CIRLs that bear interesting
consequences, i.e.

(x → y) ∨ (y → x) ≈ 1. (prel)
x(x → y) ≈ y(y → x); (div)

A subvariety of FLew satisfies the prelinearity equation (prel) if and only if
any algebra therein is a subdirect product of totally ordered algebras (and
this implies via the classic Birkhoff’s result that all the subdirectly
irreducible algebras are totally ordered).

If a variety satisfies the divisibility condition (div) then the lattice
ordering becomes the inverse divisibility ordering: for any algebra A
therein and for all a, b ∈ A

a ≤ b if and only if there is c ∈ A with a = bc.

Moreover it can be easily shown that a(a→ b) = a ∧ b.

Paolo Aglianò Sara Ugolini agliano@live.com sara@iiia.csic.es https://arxiv.org/abs/2008.13181Projectivity in (bounded) commutative integral residuated lattices



Hoops

There are two equations in the language of CIRLs that bear interesting
consequences, i.e.

(x → y) ∨ (y → x) ≈ 1. (prel)
x(x → y) ≈ y(y → x); (div)

A subvariety of FLew satisfies the prelinearity equation (prel) if and only if
any algebra therein is a subdirect product of totally ordered algebras (and
this implies via the classic Birkhoff’s result that all the subdirectly
irreducible algebras are totally ordered).
If a variety satisfies the divisibility condition (div) then the lattice
ordering becomes the inverse divisibility ordering: for any algebra A
therein and for all a, b ∈ A

a ≤ b if and only if there is c ∈ A with a = bc.

Moreover it can be easily shown that a(a→ b) = a ∧ b.

Paolo Aglianò Sara Ugolini agliano@live.com sara@iiia.csic.es https://arxiv.org/abs/2008.13181Projectivity in (bounded) commutative integral residuated lattices



Hoops

There are two equations in the language of CIRLs that bear interesting
consequences, i.e.

(x → y) ∨ (y → x) ≈ 1. (prel)
x(x → y) ≈ y(y → x); (div)

A subvariety of FLew satisfies the prelinearity equation (prel) if and only if
any algebra therein is a subdirect product of totally ordered algebras (and
this implies via the classic Birkhoff’s result that all the subdirectly
irreducible algebras are totally ordered).
If a variety satisfies the divisibility condition (div) then the lattice
ordering becomes the inverse divisibility ordering: for any algebra A
therein and for all a, b ∈ A

a ≤ b if and only if there is c ∈ A with a = bc.

Moreover it can be easily shown that a(a→ b) = a ∧ b.

Paolo Aglianò Sara Ugolini agliano@live.com sara@iiia.csic.es https://arxiv.org/abs/2008.13181Projectivity in (bounded) commutative integral residuated lattices



A hoop is a ∨-less subreduct of a divisible CIRL; we have
• the class of hoops is a variety H and consists of all divisible

residuated semilattices;

• H is not a variety of CIRLs;
• however it can be easily shown that every prelinear hoop is (term

equivalent to) a CIRL, since ∨ is definable as

x ∨ y := ((x → y)→ y) ∧ ((y → x)→ x);

• hence the variety BH of prelinear hoops, commonly known as basic
hoops, is variety of CIRLs and it is in fact the class of ∨-less
subreducts of BL-algebras;

• in fact every variety of basic hoops is a variety of CIRLs;
• a well investigated example of a variety of hoops that is not a variety

of CIRLs is the variety of Brouwerian semilattices.
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Theorem
(A.-Ugolini) Every finite hoop is projective in the class of finite hoops;
hence in any locally finite variety of hoops the finite hoops are exactly the
finitely presented projective hoops.

Since (Blok-Ferreirim) the locally finite variety of hoops are exactly the
varieties in which the monoidal operation is n-potent for a fixed n (i.e.
they satisfy xn ≈ xn+1) it follows at once that the finite Brouwerian
semilattices are exactly the finitely presented projective ones (as observed
by Ghilardi using a different argument).

Moreover every locally finite prelinear variety of CIRLs must have the
same property, since it is (term equivalent to) a locally finite variety of
basic hoops.
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Cancellative hoops

If we remove the hypothesis of being locally finite, the previous result
does not hold.

Indeed, for instance, not all finitely presented Wajsberg hoops (i.e. the
0-less subreducts of MV-algebras) are projective, as shown by Sara
Ugolini in her talk.

A hoop is cancellative if the underlying monoid is cancellative in the
usual sense; clearly such variety cannot have finite models, so it is not
locally finite.

However, using Beynon’s results on `-groups and the fact that
cancellative hoops are equivalent to negative cones of abelian `-groups
we get

Theorem
(A.-Ugolini) The finitely presented cancellative hoops are exactly the
finitely generated and projective ones.
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Adding the lower bound

If we add the constant 0 to the signature to represent the least element of
the considered structures, the argument used above again does not work.

Indeed in the theorem, given any surjective homomorphism to a finite
hoop, we define an embedding that testifies the retraction which is not
necessarily preserving the lower bound and here is why:

Lemma
2 is a retract of of every free algebra in every subvariety V of FLew ; hence
if A is projective in V, then A has 2 as a homomorphic image.

Since there are finite bounded hoops (e.g. the three element MV-algebra)
of which 2 is not a homomorphic image, the result cannot hold if a
bound is present.
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For finite bounded hoops this necessary condition is also sufficient:

Theorem
(A.-Ugolini) A finite bounded hoop A is projective in the class of finite
bounded hoops if and only if A has 2 as a homomorphic image.

Corollary

Let V be a locally finite variety of bounded hoops; then a finite A ∈ V is
projective in V if and only if A has 2 as a homomorphic image.

Corollary

Let V be a locally finite variety of BL-algebras; then a finite A ∈ V is
projective in V if and only if A has 2 as a homomorphic image.
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Since every finite algebra A in a variety is a subdirect product of finite
subdirectly irreducible algebras, and all the subdirect factors are
homomorphic images of A, we can sharpen a little our results.

Theorem
Let V be a locally finite variety of bounded hoops or BL-algebras such
that every finite subdirectly irreducible in V has 2 as homomorphic
image. Then every finitely presented algebra in V is projective.

This is (yet another) reason why every finitely presented (i.e., finite)
Boolean algebra is projective: the variety of Boolean algebras is locally
finite and the only subdirectly irreducible is 2.
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A more intriguing example is the following: a variety of FLew -algebras is
Stonean if it satisfies the equation ¬x ∨ ¬¬x ≈ 1 (of course
¬x := x → 0).

It is the straightforward consequence of the characterization of the
subdirectly irreducible BL-algebras in (A.-Montagna) that a finite
subdirectly irreducible algebra in a Stonean variety is of the form
A = 2⊕ B, where B is a totally ordered hoop.

Since B is a filter of A, we can collapse it and get 2 as a homomorphic
image of A. Hence Stonean BL-algebras fall under the scope of the
previous result.

Stonean BL-algebras are a particular instance of a construction known as
generalized rotation; projectivity in varieties of BL-algebras that are
generalized rotations of varieties of basic hoops has been investigated by
Sara and me in a separate paper.
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Algebraic unification Ghilardi-style

The classical syntactic unification problem is as follows: given two term
s, t find a unifier for them, that is, a uniform replacement of the variables
occurring in s and t by other terms that makes s and t identical.

When the syntactical identity is replaced by equality modulo a given
equational theory E , one speaks of E -unification, which can be
considerably harder than syntactic unification, even when the theory E is
fairly well understood.

(Ghilardi’s solution) A unification problem for a variety V is a finitely
presented algebra A ∈ V; a solution is a homomorphism u : A −→ P,
where P is a projective algebra in V. In this case u is called a unifier for
A and we say that A is unifiable.

Paolo Aglianò Sara Ugolini agliano@live.com sara@iiia.csic.es https://arxiv.org/abs/2008.13181Projectivity in (bounded) commutative integral residuated lattices



Algebraic unification Ghilardi-style

The classical syntactic unification problem is as follows: given two term
s, t find a unifier for them, that is, a uniform replacement of the variables
occurring in s and t by other terms that makes s and t identical.

When the syntactical identity is replaced by equality modulo a given
equational theory E , one speaks of E -unification, which can be
considerably harder than syntactic unification, even when the theory E is
fairly well understood.

(Ghilardi’s solution) A unification problem for a variety V is a finitely
presented algebra A ∈ V; a solution is a homomorphism u : A −→ P,
where P is a projective algebra in V. In this case u is called a unifier for
A and we say that A is unifiable.

Paolo Aglianò Sara Ugolini agliano@live.com sara@iiia.csic.es https://arxiv.org/abs/2008.13181Projectivity in (bounded) commutative integral residuated lattices



Algebraic unification Ghilardi-style

The classical syntactic unification problem is as follows: given two term
s, t find a unifier for them, that is, a uniform replacement of the variables
occurring in s and t by other terms that makes s and t identical.

When the syntactical identity is replaced by equality modulo a given
equational theory E , one speaks of E -unification, which can be
considerably harder than syntactic unification, even when the theory E is
fairly well understood.

(Ghilardi’s solution) A unification problem for a variety V is a finitely
presented algebra A ∈ V; a solution is a homomorphism u : A −→ P,
where P is a projective algebra in V. In this case u is called a unifier for
A and we say that A is unifiable.

Paolo Aglianò Sara Ugolini agliano@live.com sara@iiia.csic.es https://arxiv.org/abs/2008.13181Projectivity in (bounded) commutative integral residuated lattices



Unification types

If u1, u2 are unifiers for an algebra A (with projective targets P1 and P2)
we say that u1 is more general than u2 if there exists a homomorphism
m : P1 −→ P2 such that mu1 = u2.

The relation “being less general of” is a preordering on the unifiers of A,
thus we can consider the associated equivalence relation; then the
equivalence classes form a partially ordered set UA.

The unification type of a finitely presented algebra A is defined
accordingly to how many maximal elements has UA; the type of V is
defined as the worst case scenario of the type of finitely presented
algebras in V.

If all the UA have a unique maximal element then the type of V is
unitary; if in any case this maximal element is the identity, then V has
strong unitary type.
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Lemma
Let V be any variety; then the following are equivalent.

1 V has strong unitary type;
2 for any finitely presented algebra A ∈ V, A is unifiable if and only if

it is projective.

In varieties of FLew -algebras any unifiable algebra must have a surjective
homomorphism on the two element algebra 2 and since, 2 is projective in
every variety of FLew -algebras, we get:

Lemma
For a variety V of FLew -algebras the following are equivalent:

1 V has strong unitary type;
2 for any finitely presented A ∈ V, A has 2 as a homomorphic image if

and only if A is projective.
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Theorem
The following varieties, and their corresponding logics, have strong
unitary unification type:

1 all locally finite subvarieties of hoops;
2 all locally finite subvarieties of bounded hoops and BL-algebras;
3 cancellative hoops.
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THANK YOU!
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