(A bit more) abstract Lindenbaum lemma

Petr Cintula

Institute of Computer Science Czech Academy of Sciences

TACL 2022

The "original" abstract Lindenbaum Lemma

Let \vdash be a finitary consequence relation. Then the meet-irreducible theories form a basis of $Th(\vdash)$.

The "original" abstract Lindenbaum Lemma

Let \vdash be a finitary consequence relation.

Then the meet-irreducible theories form a basis of $\mathrm{Th}({\mbox{\tiny F}}).$

The "original" abstract Lindenbaum Lemma

Let \vdash be a finitary consequence relation. Then the meet-irreducible theories form a basis of $Th(\vdash)$.

Lindenbaum Lemma for certain infinitary consequence relations

Let \vdash be a consequence relation

Then the finitely meet-irreducible theories form a basis of Th(F).

The "original" abstract Lindenbaum Lemma

Let \vdash be a finitary consequence relation. Then the meet-irreducible theories form a basis of $Th(\vdash)$.

Lindenbaum Lemma for certain infinitary consequence relations

Let ⊢ be a consequence relation on a countable set of formulas such that

- ⊢ has a countable axiomatization,
- Th(F) is a frame,
- the intersection of any two finitely generated theories is finitely generated.

Then the finitely meet-irreducible theories form a basis of $\mathrm{Th}(F)$.

An example of infinitary many-valued logic

The standard MV-algebra $[0, 1]_L$ has the real unit interval [0, 1] as domain and operations \rightarrow , &, \lor , and \neg interpreted as:

$$x \to y = \min\{1, 1 - x + y\}$$
 $x \& y = \max\{0, x + y - 1\}$
 $x \lor y = \max\{x, y\}$ $\neg x = 1 - x$

The logic of standard MV-algebra (a.k.a. infinitary Łukasiewicz logic):

 $\Gamma \models_{\mathrm{LSMVA}} \varphi \qquad \text{iff} \qquad (\forall e \colon \mathbf{Fm} \to [\mathbf{0},\mathbf{1}]_{\mathrm{L}}) (e[\Gamma] \subseteq \{1\} \Longrightarrow e(\varphi) = 1)$

LSMVA is not finitary, e.g.:

$$\{\neg \varphi \to \varphi \& : \stackrel{n}{\ldots} \& \varphi \mid n \ge 0\} \models_{\text{LSMVA}} \varphi \quad \text{but}$$
$$\{\neg \varphi \to \varphi \& : \stackrel{n}{\ldots} \& \varphi \mid n \le k\} \not\models_{\text{LSMVA}} \varphi \quad \text{for each } k$$

Two examples of infinitary modal logics

In PDL:

$$\{[\alpha;\beta^n]\varphi\mid n\in\mathbb{N}\}\models [\alpha;\beta^*]\varphi$$

• In logics of common knowledge:

 $\{E^{n+1}\varphi \mid n \in \mathbb{N}\} \models C\varphi$

A statement, a question, and some answers

To find strongly complete axiomatization of a given logic we need (a variant of) Lindebaum lemma

Can we have it for infinitary logics?

A statement, a question, and some answers

To find strongly complete axiomatization of a given logic we need (a variant of) Lindebaum lemma

Can we have it for infinitary logics?

A very incomplete list of existing answers:

1963 Hay: (indirectly) for the Logic of Standard MV-Algebra

1977 Sundholm: for Von Wright's temporal logic

1993 Goldblatt: a general approach for modal logics with classical base

1994 Segerberg: a general method using saturated sets of formulas

2018 Bílková, Cintula, Lávička: a general method for certain algebraic logics

Consequence relations/logics

Fm: a countable set of formulas

A consequence relation \vdash is a relation between sets of formulas and formulas s.t.:

• $\{\varphi\} \vdash \varphi$	(Reflexivity)
• If $\Gamma \vdash \varphi$, then $\Gamma \cup \Delta \vdash \varphi$	(Monotonicity)
• If $\Gamma \vdash \varphi$ and $\Delta \vdash \psi$ for each $\psi \in \Gamma$, then $\Delta \vdash \varphi$	(Cut)

A consequence relation is

- finitary if: $\Gamma \vdash \varphi$ implies there is a finite $\Gamma' \subseteq \Gamma$ s.t. $\Gamma' \vdash \varphi$.
- structural (a.k.a. logic) if: $\Gamma \vdash \varphi$ implies $\sigma[\Gamma] \vdash \sigma(\varphi)$ for each substitution σ

CRs, COs, and CSs

Each CR determines a

- closure operator $\mathsf{Th}_{\vdash}(): \mathcal{P}(Fm) \to \mathcal{P}(Fm)$ defined as $\mathsf{Th}_{\vdash}(X) = \{a \mid X \vdash a\}$
- closure system $\operatorname{Th}(\mathsf{F}) \subseteq \mathcal{P}(Fm)$ defined as $\operatorname{Th}(\mathsf{F}) = \{X \mid X = \operatorname{Th}_{\mathsf{F}}(X)\}$

CRs, COs, and CSs

Each CR determines a

- closure operator $\mathsf{Th}_{\vdash}(): \mathcal{P}(Fm) \to \mathcal{P}(Fm)$ defined as $\mathsf{Th}_{\vdash}(X) = \{a \mid X \vdash a\}$
- closure system $\operatorname{Th}(\mathsf{F}) \subseteq \mathcal{P}(Fm)$ defined as $\operatorname{Th}(\mathsf{F}) = \{X \mid X = \mathsf{Th}_{\mathsf{F}}(X)\}$

An element of Th(+) (a.k.a. a theory) is prime if it is not an intersection of two strictly bigger theories (i.e., it is finitely meet-irreducible)

CRs, COs, and CSs

Each CR determines a

- closure operator $\mathsf{Th}_{\vdash}(): \mathcal{P}(Fm) \to \mathcal{P}(Fm)$ defined as $\mathsf{Th}_{\vdash}(X) = \{a \mid X \vdash a\}$
- closure system $\operatorname{Th}(\mathsf{F}) \subseteq \mathcal{P}(Fm)$ defined as $\operatorname{Th}(\mathsf{F}) = \{X \mid X = \mathsf{Th}_{\mathsf{F}}(X)\}$

An element of Th(+) (a.k.a. a theory) is prime if it is not an intersection of two strictly bigger theories (i.e., it is finitely meet-irreducible)

A set X of theories is a basis of Th(F) if (any of the following),

- Whenever $X \nvDash a$, then there is a $T \in X$ such that $X \subseteq T$ and $a \notin T$.
- Each theory is the intersection of a system of theories from X.
- Each theory is the intersection of all theories from X extending it.

1st ingredient: Countable axiomatization

A CR \vdash is countably axiomatizable if there is a countable set $\mathcal{AS} \subseteq \mathcal{P}(Fm) \times Fm$ st $X \vdash a$ iff there is a tree without infinite branches labeled by formulas st

- its root is labeled by *a*,
- if *l* is a label of some of its leafs, then $l \in X$ or $\emptyset \triangleright l \in \mathcal{AS}$,
- if a non-leaf is labeled by c and P is the set of labels of its direct predecessors, then $P \triangleright c \in \mathcal{AS}$.

1st ingredient: Countable axiomatization

Fact: each finitary CR (on countable set of formulas) is countably axiomatizable:

 $\mathcal{AS} = \{ P \triangleright c \mid P \vdash c \text{ and } P \text{ is finite} \}$

1st ingredient: Countable axiomatization

Fact: each finitary CR (on countable set of formulas) is countably axiomatizable:

 $\mathcal{AS} = \{ P \triangleright c \mid P \vdash c \text{ and } P \text{ is finite} \}$

Not conversely: the logic L_{∞} given by Łukasiewicz 4 axioms, MP, and

$$\{\neg \varphi \to \varphi \& : \stackrel{n}{\ldots} \& \varphi \mid n \ge 0\} \triangleright \varphi$$
 (Hay rule)

is countably axiomatizable but not finitary as

 $\Gamma \vdash_{\mathcal{L}_{\infty}} \varphi$ implies $\Gamma \models_{\mathcal{LSMVA}} \varphi$.

2nd ingredient: Nice lattice of theories

 $\operatorname{Th}(\mathsf{F})$ is domain of a complete lattice, where for $\mathcal{Y} \subseteq \operatorname{Th}(\mathsf{F})$ we have:

$$\bigwedge \mathcal{Y} = \bigcap \mathcal{Y} \qquad \qquad \bigvee \mathcal{Y} = \mathsf{Th}_{\mathsf{F}}(\bigcup \mathcal{Y})$$

2nd ingredient: Nice lattice of theories

Th(F) is domain of a complete lattice, where for $\mathcal{Y} \subseteq Th(F)$ we have:

$$\bigwedge \mathcal{Y} = \bigcap \mathcal{Y} \qquad \qquad \bigvee \mathcal{Y} = \mathsf{Th}_{\mathsf{F}}(\bigcup \mathcal{Y})$$

Th(\vdash) is a frame if for each {*X*} $\cup \mathcal{Y} \subseteq$ Th(\vdash):

$$X \cap \bigvee \mathcal{Y} = \bigvee_{Y \in \mathcal{Y}} (X \wedge Y).$$

2nd ingredient: Nice lattice of theories

 $\mathrm{Th}(\mathsf{F})$ is domain of a complete lattice, where for $\mathcal{Y} \subseteq \mathrm{Th}(\mathsf{F})$ we have:

$$\bigwedge \mathcal{Y} = \bigcap \mathcal{Y} \qquad \qquad \bigvee \mathcal{Y} = \mathsf{Th}_{\mathsf{F}}(\bigcup \mathcal{Y})$$

Th(\vdash) is a frame if for each {*X*} $\cup \mathcal{Y} \subseteq$ Th(\vdash):

$$X \cap \bigvee \mathcal{Y} = \bigvee_{Y \in \mathcal{Y}} (X \wedge Y).$$

Fact: If \vdash is finitary, then $Th(\vdash)$ is frame iff it is distributive.

Fact (to be believed): $Th(F_{L_{\infty}})$ is a frame. Recall that $F_{L_{\infty}}$ is not finitary!

A CR has FGIP if the intersection of any two finitely generated theories is finitely generated

Fact: $\operatorname{Th}_{\vdash_{\operatorname{Los}}}(X) \cap \operatorname{Th}_{\vdash_{\operatorname{Los}}}(Y) = \operatorname{Th}_{\vdash_{\operatorname{Los}}}(\{x \lor y \mid x \in X, y \in Y\})$

A CR has FGIP if the intersection of any two finitely generated theories is finitely generated

 $\mathsf{Fact:} \ \mathrm{Th}_{\vdash_{\mathrm{L}_{\infty}}}(X) \cap \mathrm{Th}_{\vdash_{\mathrm{L}_{\infty}}}(Y) = \mathrm{Th}_{\vdash_{\mathrm{L}_{\infty}}}(\{x \lor y \mid x \in X, y \in Y\}) \implies \ \vdash_{\mathrm{L}_{\infty}} \mathsf{has} \ \mathsf{FGIP}$

A CR has FGIP if the intersection of any two finitely generated theories is finitely generated

 $\mathsf{Fact:} \ \mathrm{Th}_{\vdash_{\mathrm{L}_{\infty}}}(X) \cap \mathrm{Th}_{\vdash_{\mathrm{L}_{\infty}}}(Y) = \mathrm{Th}_{\vdash_{\mathrm{L}_{\infty}}}(\{x \lor y \mid x \in X, y \in Y\}) \implies \ \vdash_{\mathrm{L}_{\infty}} \mathsf{has} \ \mathsf{FGIP}$

For a CR \vdash with FGIP, then there is a function $\nabla \colon Fm \times Fm \to \mathcal{P}_{fin}(Fm)$ st.:

 $\mathsf{Th}_{\mathsf{F}}(x) \cap \mathsf{Th}_{\mathsf{F}}(y) = \mathsf{Th}_{\mathsf{F}}(x \nabla y).$

A CR has FGIP if the intersection of any two finitely generated theories is finitely generated

 $\mathsf{Fact:} \ \mathrm{Th}_{\vdash_{\mathrm{L}_{\infty}}}(X) \cap \mathrm{Th}_{\vdash_{\mathrm{L}_{\infty}}}(Y) = \mathrm{Th}_{\vdash_{\mathrm{L}_{\infty}}}(\{x \lor y \mid x \in X, y \in Y\}) \implies \ \vdash_{\mathrm{L}_{\infty}} \mathsf{has} \ \mathsf{FGIP}$

For a CR \vdash with FGIP, then there is a function $\nabla \colon Fm \times Fm \to \mathcal{P}_{fin}(Fm)$ st.:

 $\mathsf{Th}_{\mathsf{F}}(x) \cap \mathsf{Th}_{\mathsf{F}}(y) = \mathsf{Th}_{\mathsf{F}}(x \nabla y).$

Fact: if $Th(\vdash)$ is distributive, then

- existence of any such function ∇ implies FGIP
- (for any such function ∇) a theory *T* is prime iff

 $x \nabla y \subseteq T$ implies $x \in T$ or $y \in T$ (for each x, y)

The main result

Lindenbaum Lemma for certain infinitary consequence relations Let + be a consequence relation on a countable set of formulas such that

- ⊢ has a countable axiomatization,
- Th(F) is a frame,
- the intersection of any two finitely generated theories is finitely generated.

Then the prime theories form a basis of Th(F).

The proof – preparation: a relation $\mathbb{H} \subseteq \mathcal{P}(Fm) \times \mathcal{P}_{fin}(Fm)$

$$X \Vdash Y$$
 iff $\bigcap_{y \in Y} \mathsf{Th}_{\mathsf{F}}(y) \subseteq \mathsf{Th}_{\mathsf{F}}(X).$

If Th(F) is a frame, then

$$\frac{\{X \Vdash Y \cup \{p\} \mid p \in P\} \qquad X \cup P \Vdash Y}{X \Vdash Y}$$

The proof – preparation: a relation $\mathbb{H} \subseteq \mathcal{P}(Fm) \times \mathcal{P}_{fin}(Fm)$

$$X \Vdash Y$$
 iff $\bigcap_{y \in Y} \mathsf{Th}_{\mathsf{F}}(y) \subseteq \mathsf{Th}_{\mathsf{F}}(X).$

If $\operatorname{Th}(\vdash)$ is a frame, then

$$\frac{\{X \Vdash Y \cup \{p\} \mid p \in P\} \qquad X \cup P \Vdash Y}{X \Vdash Y}.$$

Set $W = \bigcap_{y \in Y} \mathsf{Th}_{\mathsf{F}}(y)$ we need to show that $W \subseteq \mathsf{Th}_{\mathsf{F}}(X)$

$$W \cap \mathsf{Th}_{\mathsf{F}}(P) = W \cap \bigvee_{p \in P} (\mathsf{Th}_{\mathsf{F}}(p)) = \bigvee_{p \in P} (W \cap \mathsf{Th}_{\mathsf{F}}(p)) \subseteq \mathsf{Th}_{\mathsf{F}}(X)$$

The proof – preparation: a relation $\mathbb{H} \subseteq \mathcal{P}(Fm) \times \mathcal{P}_{fin}(Fm)$

$$X \Vdash Y$$
 iff $\bigcap_{y \in Y} \mathsf{Th}_{\mathsf{F}}(y) \subseteq \mathsf{Th}_{\mathsf{F}}(X).$

If $\operatorname{Th}(\vdash)$ is a frame, then

$$\frac{\{X \Vdash Y \cup \{p\} \mid p \in P\}}{X \Vdash Y}.$$

Set $W = \bigcap_{y \in Y} \mathsf{Th}_{\mathsf{F}}(y)$ we need to show that $W \subseteq \mathsf{Th}_{\mathsf{F}}(X)$

$$W \cap \mathsf{Th}_{\mathsf{F}}(P) = W \cap \bigvee_{p \in P} (\mathsf{Th}_{\mathsf{F}}(p)) = \bigvee_{p \in P} (W \cap \mathsf{Th}_{\mathsf{F}}(p)) \subseteq \mathsf{Th}_{\mathsf{F}}(X)$$

 $\mathsf{Th}_{\vdash}(X) = (W \cap \mathsf{Th}_{\vdash}(P)) \vee \mathsf{Th}_{\vdash}(X) = (W \vee \mathsf{Th}_{\vdash}(X)) \cap (\mathsf{Th}_{\vdash}(P) \vee \mathsf{Th}_{\vdash}(X))$ $\supseteq (W \vee \mathsf{Th}_{\vdash}(X)) \cap W = W$

Enumerate rules of any \mathcal{AS} of \vdash as $P_i \triangleright c_i$; assume that $\{y\} \triangleright y \in \mathcal{AS}$ for each y

Construct sequences $X = X_0 \subseteq X_1 \subseteq ...$ and $\{x\} = Y_0 \subseteq Y_1 \subseteq ...$ st. $X_i \nvDash Y_i$:

$$\langle X_{i+1}, Y_{i+1} \rangle = \begin{cases} \langle X_i \cup \{c_i\}, Y_i \rangle & \text{if } X_i \cup \{c_i\} \not\models Y_i \\ \langle X_i, Y_i \cup \{p\} \rangle & \text{for some } p \in P_i \text{ st. } X_i \not\models Y_i \cup \{p\} \text{ otherwise} \end{cases}$$

Enumerate rules of any \mathcal{RS} of \vdash as $P_i \triangleright c_i$; assume that $\{y\} \triangleright y \in \mathcal{RS}$ for each y

Construct sequences $X = X_0 \subseteq X_1 \subseteq ...$ and $\{x\} = Y_0 \subseteq Y_1 \subseteq ...$ st. $X_i \nvDash Y_i$:

$$\langle X_{i+1}, Y_{i+1} \rangle = \begin{cases} \langle X_i \cup \{c_i\}, Y_i \rangle & \text{if } X_i \cup \{c_i\} \nvDash Y_i \\ \langle X_i, Y_i \cup \{p\} \rangle & \text{for some } p \in P_i \text{ st. } X_i \nvDash Y_i \cup \{p\} \text{ otherwise} \end{cases}$$

indeed such p has to exist (because Th(F) if a frame):

 $\frac{\begin{array}{c|c} \{X_i \Vdash Y_i \cup \{p\} \mid p \in P_i\} \\ \hline \{X_i \Vdash Y_i \cup \{c_i\} \cup \{p\} \mid p \in P_i\} \\ \hline X_i \Vdash Y_i \cup \{c_i\} \\ \hline X_i \Vdash Y_i \cup \{c_i\} \\ \hline X_i \Vdash Y_i \\ \hline \end{array}} \frac{P_i \Vdash \{c_i\}}{X_i \cup P_i \Vdash Y_i \cup \{c_i\}} \\ \hline X_i \cup \{c_i\} \Vdash Y_i \\ \hline \end{array}$

Enumerate rules of any \mathcal{AS} of \vdash as $P_i \triangleright c_i$; assume that $\{y\} \triangleright y \in \mathcal{AS}$ for each y

Construct sequences $X = X_0 \subseteq X_1 \subseteq ...$ and $\{x\} = Y_0 \subseteq Y_1 \subseteq ...$ st. $X_i \nvDash Y_i$:

$$\langle X_{i+1}, Y_{i+1} \rangle = \begin{cases} \langle X_i \cup \{c_i\}, Y_i \rangle & \text{if } X_i \cup \{c_i\} \nvDash Y_i \\ \langle X_i, Y_i \cup \{p\} \rangle & \text{for some } p \in P_i \text{ st. } X_i \nvDash Y_i \cup \{p\} \text{ otherwise} \end{cases}$$

Fact: $X' = \bigcup X_i$ is a theory.

Enumerate rules of any \mathcal{RS} of \vdash as $P_i \triangleright c_i$; assume that $\{y\} \triangleright y \in \mathcal{RS}$ for each y

Construct sequences $X = X_0 \subseteq X_1 \subseteq ...$ and $\{x\} = Y_0 \subseteq Y_1 \subseteq ...$ st. $X_i \nvDash Y_i$:

$$\langle X_{i+1}, Y_{i+1} \rangle = \begin{cases} \langle X_i \cup \{c_i\}, Y_i \rangle & \text{if } X_i \cup \{c_i\} \nvDash Y_i \\ \langle X_i, Y_i \cup \{p\} \rangle & \text{for some } p \in P_i \text{ st. } X_i \nvDash Y_i \cup \{p\} \text{ otherwise} \end{cases}$$

Fact: $X' = \bigcup X_i$ is a theory. Assume that $X' \vdash y$ and fix a proof of y from X'

We prove for each node that its label $l \in X_i$ for some *i*.

If it is a leaf and $l \in X'$, then it is trivial

and $\emptyset \triangleright l$, then $l = c_i$ for some *i* and so $l \in X_i$

Enumerate rules of any \mathcal{RS} of \vdash as $P_i \triangleright c_i$; assume that $\{y\} \triangleright y \in \mathcal{RS}$ for each y

Construct sequences $X = X_0 \subseteq X_1 \subseteq ...$ and $\{x\} = Y_0 \subseteq Y_1 \subseteq ...$ st. $X_i \nvDash Y_i$:

$$\langle X_{i+1}, Y_{i+1} \rangle = \begin{cases} \langle X_i \cup \{c_i\}, Y_i \rangle & \text{if } X_i \cup \{c_i\} \nvDash Y_i \\ \langle X_i, Y_i \cup \{p\} \rangle & \text{for some } p \in P_i \text{ st. } X_i \nvDash Y_i \cup \{p\} \text{ otherwise} \end{cases}$$

Fact: $X' = \bigcup X_i$ is a theory. Assume that $X' \vdash y$ and fix a proof of y from X'

We prove for each node that its label $l \in X_i$ for some *i*.

Otherwise there is a rule $P_i \triangleright c_i$ st $l = c_i$ and each $p \in P$ is in X_j for some j(due to IH) 1st option $\implies l = c_i \in X_{i+1}$

Enumerate rules of any \mathcal{RS} of \vdash as $P_i \triangleright c_i$; assume that $\{y\} \triangleright y \in \mathcal{RS}$ for each y

Construct sequences $X = X_0 \subseteq X_1 \subseteq ...$ and $\{x\} = Y_0 \subseteq Y_1 \subseteq ...$ st. $X_i \nvDash Y_i$:

$$\langle X_{i+1}, Y_{i+1} \rangle = \begin{cases} \langle X_i \cup \{c_i\}, Y_i \rangle & \text{if } X_i \cup \{c_i\} \nvDash Y_i \\ \langle X_i, Y_i \cup \{p\} \rangle & \text{for some } p \in P_i \text{ st. } X_i \nvDash Y_i \cup \{p\} \text{ otherwise} \end{cases}$$

Fact: $X' = \bigcup X_i$ is a theory. Assume that $X' \vdash y$ and fix a proof of y from X'

We prove for each node that its label $l \in X_i$ for some *i*.

Otherwise there is a rule $P_i \triangleright c_i$ st $l = c_i$ and each $p \in P$ is in X_j for some j(due to IH) 1st option $\implies l = c_i \in X_{i+1}$

2nd option \implies there is $p \in P_i$ and j st $p \in Y_{i+1} \cap X_j \subseteq Y_{\max\{i+1,j\}} \cap X_{\max\{i+1,j\}}$

Enumerate rules of any \mathcal{AS} of \vdash as $P_i \triangleright c_i$; assume that $\{y\} \triangleright y \in \mathcal{AS}$ for each y

Construct sequences $X = X_0 \subseteq X_1 \subseteq ...$ and $\{x\} = Y_0 \subseteq Y_1 \subseteq ...$ st. $X_i \nvDash Y_i$:

$$\langle X_{i+1}, Y_{i+1} \rangle = \begin{cases} \langle X_i \cup \{c_i\}, Y_i \rangle & \text{if } X_i \cup \{c_i\} \nvDash Y_i \\ \langle X_i, Y_i \cup \{p\} \rangle & \text{for some } p \in P_i \text{ st. } X_i \nvDash Y_i \cup \{p\} \text{ otherwise} \end{cases}$$

Fact: $X' = \bigcup X_i$ is a prime theory.

Enumerate rules of any \mathcal{RS} of \vdash as $P_i \triangleright c_i$; assume that $\{y\} \triangleright y \in \mathcal{RS}$ for each y

Construct sequences $X = X_0 \subseteq X_1 \subseteq ...$ and $\{x\} = Y_0 \subseteq Y_1 \subseteq ...$ st. $X_i \nvDash Y_i$:

$$\langle X_{i+1}, Y_{i+1} \rangle = \begin{cases} \langle X_i \cup \{c_i\}, Y_i \rangle & \text{if } X_i \cup \{c_i\} \nvDash Y_i \\ \langle X_i, Y_i \cup \{p\} \rangle & \text{for some } p \in P_i \text{ st. } X_i \nvDash Y_i \cup \{p\} \text{ otherwise} \end{cases}$$

Fact: $X' = \bigcup X_i$ is a prime theory.

Otherwise there are theories U_1 and U_2 , elements $u_i \in U_i \setminus X$ and a finite set U st.

 $U \subseteq \mathsf{Th}_{\vdash}(U) = \mathsf{Th}_{\vdash}(u_1) \cap \mathsf{Th}_{\vdash}(u_2) \subseteq U_1 \cap U_2 = X$

Enumerate rules of any \mathcal{RS} of \vdash as $P_i \triangleright c_i$; assume that $\{y\} \triangleright y \in \mathcal{RS}$ for each y

Construct sequences $X = X_0 \subseteq X_1 \subseteq ...$ and $\{x\} = Y_0 \subseteq Y_1 \subseteq ...$ st. $X_i \nvDash Y_i$:

$$\langle X_{i+1}, Y_{i+1} \rangle = \begin{cases} \langle X_i \cup \{c_i\}, Y_i \rangle & \text{if } X_i \cup \{c_i\} \nvDash Y_i \\ \langle X_i, Y_i \cup \{p\} \rangle & \text{for some } p \in P_i \text{ st. } X_i \nvDash Y_i \cup \{p\} \text{ otherwise} \end{cases}$$

Fact: $X' = \bigcup X_i$ is a prime theory.

Otherwise there are theories U_1 and U_2 , elements $u_i \in U_i \setminus X'$ and a finite set U st.

 $U \subseteq \mathsf{Th}_{\vdash}(U) = \mathsf{Th}_{\vdash}(u_1) \cap \mathsf{Th}_{\vdash}(u_2) \subseteq U_1 \cap U_2 = X'$

Thus there is *i* st. $U \subseteq X_i$ and $u_1, u_2 \in Y_i$ and so $X_i \Vdash Y_i$, a contradiction:

$$\bigcap_{y \in Y_i} \mathsf{Th}_{\mathsf{F}}(y) \subseteq \mathsf{Th}_{\mathsf{F}}(u_1) \cap \mathsf{Th}_{\mathsf{F}}(u_2) = \mathsf{Th}_{\mathsf{F}}(U) \subseteq \mathsf{Th}_{\mathsf{F}}(X_i)$$

The need for frames

Consider a CR \vdash on the set $Fm = \mathbb{N}$ given by countable set of rules:

 $\{i \mid i > n\} \triangleright n \qquad (for n \ge 0)$

Fact 1: *X* is a theory iff X = Fm or $Fm \setminus X$ is infinite

Fact 2: X is finitely generated iff X is finite; and so \vdash has FGIP.

Fact 3: *Fm* is the only prime theory

Thus Lindenbaum lemma has to fail and $\mathrm{Th}(F)$ is not a frame.

The need for countable axiomatization

Consider propositional language with \lor , and a constant i for each $i \in \mathbb{N}$.

Let ⊢ be the expansion of the disjunction-fragment of classical logic by:

 $\{\mathbf{i} \lor \chi \mid i \in C\} \triangleright \chi$

for each infinite set $C \subseteq \mathbb{N}$ and a formula χ .

Fact 1 (to believe): $\operatorname{Th}(\vdash)$ is a frame and \vdash has FGIP (as $\operatorname{Th}_{\vdash}(\chi) \cap \operatorname{Th}_{\vdash}(\psi) = \operatorname{Th}_{\vdash}(\chi \lor \psi)$) Fact 2 (to believe): $X = \{2\mathbf{i} \lor 2\mathbf{i} + 1 \mid i \in \mathbb{N}\} \nvDash \mathbf{0}$

Fact 3: For each prime theory $T \supseteq \Gamma$ we have $T \vdash 0$; thus Lindenbaum lemma fails

The need for FGIP

?