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The result in one page ...

The “original” abstract Lindenbaum Lemma
Let + be a finitary consequence relation.

Then the meet-irreducible theories form a basis of Th(t).

Petr Cintula (ICS CAS) (A bit more) abstract Lindenbaum lemma

TACL 2022

2/17



The result in one page ...

The “original” abstract Lindenbaum Lemma
Let + be a finitary consequence relation.

Then the meet-irreducible theories form a basis of Th(t).

Petr Cintula (ICS CAS) (A bit more) abstract Lindenbaum lemma

TACL 2022

2/17



The result in one page ...

The “original” abstract Lindenbaum Lemma

Let + be a finitary consequence relation.
Then the meet-irreducible theories form a basis of Th(+).

Lindenbaum Lemma for certain infinitary consequence relations
Let + be a consequence relation

Then the finitely meet-irreducible theories form a basis of Th().

Petr Cintula (ICS CAS) (A bit more) abstract Lindenbaum lemma TACL 2022 2/17




The result in one page ...

The “original” abstract Lindenbaum Lemma

Let + be a finitary consequence relation.
Then the meet-irreducible theories form a basis of Th(+).

Lindenbaum Lemma for certain infinitary consequence relations

Let + be a consequence relation on a countable set of formulas such that
@ + has a countable axiomatization,

@ Th(+) is a frame,

@ the intersection of any two finitely generated theories is finitely generated.
Then the finitely meet-irreducible theories form a basis of Th().
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An example of infinitary many-valued logic

The standard MV-algebra [0, 1]y, has the real unit interval [0, 1] as domain and
operations —, &, v, and - interpreted as:

x = y=min{l,1 —x+y} x & y=max{0,x+y -1}

x Vy =max{x, y} x=1-x
The logic of standard MV-algebra (a.k.a. infinitary tukasiewicz logic):

IErsmva ¢ 0ff (Ve: Fm — [0,1]p)(e[I'] € {1} = e(p) = 1)

LSMVA is not finitary, e.g.:

{rp =& .. &¢|n=>0}FLsmva ¢ but

{~p—> & 2. &o|n<k}FLsmva ¢ for each k
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Two examples of infinitary modal logics

@ In PDL:
{[a;B8"l¢ | n € N} E [a; B

@ In logics of common knowledge:

{E™'¢|neN}ECoy
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A statement, a question, and some answers

To find strongly complete axiomatization of a given logic
we need (a variant of) Lindebaum lemma

Can we have it for infinitary logics?
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A statement, a question, and some answers

To find strongly complete axiomatization of a given logic
we need (a variant of) Lindebaum lemma

Can we have it for infinitary logics?
A very incomplete list of existing answers:
1963 Hay: (indirectly) for the Logic of Standard MV-Algebra
1977 Sundholm: for Von Wright's temporal logic
1993 Goldblatt: a general approach for modal logics with classical base
1994 Segerberg: a general method using saturated sets of formulas

2018 Bilkova, Cintula, Lavicka: a general method for certain algebraic logics
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Consequence relations/logics

Fm: a countable set of formulas

A consequence relation + is a relation between sets of formulas and formulas s.t.:

° {p}ro (Reflexivity)
@ IfTrg, thenTUAF @ (Monotonicity)
@ IfT"'+gpand A+ y foreachy €T, then A+ ¢ (Cut)

A consequence relation is
o finitary if: ' + ¢ implies there is a finite I C T's.t. TV + ¢.
@ structural (a.k.a. logic) if: T + ¢ implies o-[I'] + o (¢) for each substitution o
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CRs, COs, and CSs

Each CR determines a
@ closure operator Th.(): P(F'm) — P(Fm) definedas Th.(X) ={a | X + a}
@ closure system Th(r) € P(Fm) defined as Th(r) = {X | X = Th.(X)}
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@ closure system Th(r) € P(Fm) defined as Th(r) = {X | X = Th.(X)}

An element of Th(+) (a.k.a. a theory) is prime if it is not an intersection of two
strictly bigger theories (i.e., it is finitely meet-irreducible)
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CRs, COs, and CSs

Each CR determines a
@ closure operator Th,(): P(Fm) — P(Fm) definedas Th,(X) ={a | X + a}
@ closure system Th(r) € P(Fm) defined as Th(r) = {X | X = Th.(X)}

An element of Th(+) (a.k.a. a theory) is prime if it is not an intersection of two
strictly bigger theories (i.e., it is finitely meet-irreducible)

A set X of theories is a basis of Th(+) if (any of the following),
@ Whenever X ¢ a, then thereisaT € X suchthat X c T anda ¢ T.
@ Each theory is the intersection of a system of theories from X.
@ Each theory is the intersection of all theories from X extending it.
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1st ingredient: Countable axiomatization

A CR + is countably axiomatizable if there is a countable set AS € P(F'm) x Fm
st X + a iff there is a tree without infinite branches labeled by formulas st

@ its root is labeled by a,
@ if [ is a label of some of its leafs,then/ € X or 0 > 1 € AS,

@ if a non-leaf is labeled by ¢ and P is the set of labels of its direct predecessors,
then P> ce AS.
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1st ingredient: Countable axiomatization

Fact: each finitary CR (on countable set of formulas) is countably axiomatizable:

AS ={Pr>c| P+ cand P is finite}
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1st ingredient: Countable axiomatization

Fact: each finitary CR (on countable set of formulas) is countably axiomatizable:

AS ={Pr>c| P+ cand P is finite}

Not conversely: the logic L., given by tukasiewicz 4 axioms, MP, and

{mp > p& . &e|n=>0}>¢ (Hay rule)

is countably axiomatizable but not finitary as

| T, implies I' FLsmva .
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2nd ingredient: Nice lattice of theories

Th(r) is domain of a complete lattice, where for ¥ C Th(+) we have:

ANy=y \Vy=Tnh( ¥
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2nd ingredient: Nice lattice of theories

Th(r) is domain of a complete lattice, where for ¥ C Th(+) we have:
Ay=¥ V=T Jw

Th(r) is a frame if for each {X} UY C Th(+):

Xm\/y= \/(X/\Y).

YeVY
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2nd ingredient: Nice lattice of theories

Th(r) is domain of a complete lattice, where for ¥ C Th(+) we have:

Ay=¥ \Vy=Tnh( ¥
Th(r) is a frame if for each {X} UY C Th(+):

xn\/¥=\/(xnay)

YeVY

Fact: If + is finitary, then Th(+) is frame iff it is distributive.

Fact (to be believed): Th(+y,_) is a frame. Recall that -, is not finitary!
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3rd ingredient: Disguised disjunctions

A CR has FGIP if the intersection of any two finitely generated theories
is finitely generated

Fact: Thy, (X)NTh,, (Y)=Th, ({xVylxeX,yeY})
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Fact: Thy, (X)NTh,, (Y)=Th, ({xVylxeX,y€eY}) = +y, has FGIP
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3rd ingredient: Disguised disjunctions
A CR has FGIP if the intersection of any two finitely generated theories

is finitely generated

Fact: Thy, (X)NTh,, (Y)=Th, ({xVylxeX,y€eY}) = +y, has FGIP

For a CR + with FGIP, then there is a function V: F'm x Fm — Pg,(Fm) st.:

The(x) N Thy(y) = Thi(x V y).
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3rd ingredient: Disguised disjunctions

A CR has FGIP if the intersection of any two finitely generated theories
is finitely generated

Fact: Thy, (X)NTh,, (Y)=Th, ({xVylxeX,y€eY}) = +y, has FGIP

For a CR + with FGIP, then there is a function V: F'm x Fm — Pg,(Fm) st.:
The(x) N The(y) = Th(x V y).

Fact: if Th(+) is distributive, then
@ existence of any such function V implies FGIP
@ (for any such function V) a theory T is prime iff

xVycCT implies xeT oryeT (for each x, y)
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The main result

Lindenbaum Lemma for certain infinitary consequence relations
Let + be a consequence relation on a countable set of formulas such that
@ + has a countable axiomatization,
@ Th(+) is a frame,
@ the intersection of any two finitely generated theories is finitely generated.

Then the prime theories form a basis of Th(+).
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The proof — preparation: a relation i C P(F'm) X Pgn(Fm)

XKy o iff ﬂ Th.(y) € Thy(X).

yeYy
If Th(+) is a frame, then
{X+YU{p}|peP} XUPWY
XrY )
Petr Cintula (ICS CAS) (A bit more) abstract Lindenbaum lemma

TACL 2022

13/17



The proof — preparation: a relation i C P(F'm) X Pgn(Fm)

XKy o iff ﬂ Th.(y) € Thy(X).

yeYy
If Th(+) is a frame, then
{X+YU{p}|peP} XUPWY
XrY )

Set W = N, ey Thi(y) we need to show that W C Th, (X)

WnTh(P)=Wn \/(Th(p) = \/ (W Th(p)) € Th.(X)
peEP pEeEP
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The proof — preparation: a relation i C P(F'm) X Pgn(Fm)

XKy o iff ﬂ Th.(y) € Thy(X).

yeYy
If Th(+) is a frame, then
{X+YU{p}|peP} XUPWY
XrY )

Set W = N, ey Thi(y) we need to show that W C Th, (X)

WnTh(P)=Wn \/(Th(p) = \/ (W Th(p)) € Th.(X)
peEP pEP

Th(X)=(WNTh(P)) VTh(X)=(WVTh.(X)) N (Th.(P) Vv Th (X))
DWVTh.(X)NnW=W
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The proof - assume that X ¥ x
Enumerate rules of any AS of + as P; > ¢;; assume that {y} > y € AS for each y

Constructsequences X =Xy C X; C...and {x}=Yp C Y, C... st. X; ¥ Y;:

(XiU{ci}, Vi) ifX;U{cih ¥ Y
<Xi+1, Yi+1> = .
(X;, Y;U{p}) forsome p e P;st. X; ¥ Y; U{p} otherwise
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The proof - assume that X ¥ x
Enumerate rules of any AS of + as P; > ¢;; assume that {y} > y € AS for each y

Constructsequences X =Xy C X; C...and {x}=Yp C Y, C... st. X; ¥ Y;:

(XiU{ci}, Vi) ifX;U{cih ¥ Y
<Xi+1, Yi+1> = .
(X;, Y;U{p}) forsome p e P;st. X; ¥ Y; U{p} otherwise

indeed such p has to exist (because Th(r) if a frame):

{Xi v Y;U{p}|peP} P;{c;}
{Xi v Y;U{c;}U{p}|pe€P} Xi UP; rYi U{ci} ) ) :
Xi I+ Yi U {Ci} Xl Y {cl} F Yl
X +Y;
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The proof - assume that X ¥ x
Enumerate rules of any AS of + as P; > ¢;; assume that {y} > y € AS for each y

Constructsequences X =Xy C X; C...and {x}=Yp C Y, C... st. X; ¥ Y;:

(XiU{ci}, Vi) ifX;U{cih ¥ Y
<Xi+1, Yi+1> = .
(X;, Y;U{p}) forsome p e P;st. X; ¥ Y; U{p} otherwise

Fact: X’ = |J X; is a theory.

Petr Cintula (ICS CAS) (A bit more) abstract Lindenbaum lemma TACL 2022 14/17



The proof - assume that X ¥ x

Enumerate rules of any AS of - as P; > ¢;; assume that {y} > y € AS for each y
Constructsequences X =Xp C X3 C...and {x} =Yy CY; C ... st. X; ¥ ¥;:

(XiU{ci}h, Vi) ifX;U{ci} ¥ Y
<Xi+1, Yi+1> = .
(X;, Y;U{p}) forsome p e P;st. X; ¥ Y; U{p} otherwise

Fact: X’ = |J X; is a theory. Assume that X’ + y and fix a proof of y from X’
We prove for each node that its label I € X; for some i.

If itis a leaf and [/ € X’, then it is trivial

and 0 > [, then ! = ¢; forsomeiandso ! € X;
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The proof - assume that X ¥ x
Enumerate rules of any AS of - as P; > ¢;; assume that {y} > y € AS for each y

Constructsequences X =Xp C X3 C...and {x} =Yy CY; C ... st. X; ¥ ¥;:

(XiU{ci}h, Vi) ifX;U{ci} ¥ Y
<Xi+1, Yi+1> = .
(X;, Y;U{p}) forsome p e P;st. X; ¥ Y; U{p} otherwise

Fact: X’ = |J X; is a theory. Assume that X’ + y and fix a proof of y from X’
We prove for each node that its label I € X; for some i.
Otherwise there is arule P; > ¢; st = ¢; and each p € P isin X; for some j

(due to IH)
1st option = 1 =¢; € X;41
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The proof - assume that X ¥ x
Enumerate rules of any AS of + as P; > ¢;; assume that {y} > y € AS for each y

Constructsequences X =Xp C X3 C...and {x} =Yy CY; C ... st. X; ¥ ¥;:

(XiU{ci}h, Vi) ifX;U{ci} ¥ Y
<Xi+1, Yi+1> = .
(X;, Y;U{p}) forsome p e P;st. X; ¥ Y; U{p} otherwise

Fact: X’ = | X; is a theory. Assume that X’ + y and fix a proof of y from X’
We prove for each node that its label I € X; for some i.
Otherwise there is arule P; > ¢; st = ¢; and each p € Pisin X; for some j

(due to IH)
1st option = 1 =¢; € X;41

2nd option = thereis p € P; and j st p € Y11 N X C Yinax(ist,j} N Xmax{i+1,/}
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The proof - assume that X ¥ x
Enumerate rules of any AS of + as P; > ¢;; assume that {y} > y € AS for each y

Constructsequences X =Xy C X; C...and {x}=Yp C Y, C... st. X; ¥ Y;:

(XiU{ci}, Vi) ifX;U{cih ¥ Y
<Xi+1, Yi+1> = .
(X;, Y;U{p}) forsome p e P;st. X; ¥ Y; U{p} otherwise

Fact: X’ = |J X; is a prime theory.
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The proof - assume that X ¥ x
Enumerate rules of any AS of + as P; > ¢;; assume that {y} > y € AS for each y

Construct sequences X = Xg C X1 C...and {x} =Yy Cc V1 C...st. X; ¥ Y;:

(XiU{ci}, Vi) ifX;U{cih ¥ Y
<Xi+1, Yi+1> = .
(X;, Y;U{p}) forsome p e P;st. X; ¥ Y; U{p} otherwise

Fact: X’ = |J X; is a prime theory.
Otherwise there are theories U, and Us, elements u; € U; \ X and a finite set U st.

UC Th(U)=Th(u1) N Thy(u2) CU1 NUs = X
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The proof - assume that X ¥ x
Enumerate rules of any AS of - as P; > ¢;; assume that {y} > y € AS for each y

Constructsequences X =Xy C X; C...and {x}=Yp C Y, C... st. X; ¥ Y;:

(XiU{ci}, Yoy ifX;U{ci} kY
<Xi+1, Yi+1> = .
(X;, Y;U{p}) forsome p e P;st. X; ¥ Y; U{p} otherwise
Fact: X’ = | X; is a prime theory.
Otherwise there are theories U; and U,, elements u; € U; \ X’ and a finite set U st.
UCTh(U)=Th.(u1) NTh(ug) CUL NUs =X’

Thus thereisist. U C X; and uy,us € Y; and so X; I Y;, a contradiction:

() The() € The(ua) 0 The () = The(U) € The(X;)
yey;
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The need for frames

Consider a CR + on the set F'm = N given by countable set of rules:

{ili>n}>n (forn > 0)

Fact 1: X is a theory iff X = Fm or F'm \ X is infinite
Fact 2: X is finitely generated iff X is finite; and so + has FGIP.
Fact 3: F'm is the only prime theory

Thus Lindenbaum lemma has to fail and Th(r) is not a frame.
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The need for countable axiomatization

Consider propositional language with v, and a constant i for each i € N.
Let + be the expansion of the disjunction-fragment of classical logic by:

(ivylieC)my

for each infinite set C € N and a formula y.

Fact 1 (to believe): Th(+) is a frame and + has FGIP
(@s Th.(x) N Th.(¥) = Th.(x V ¥))
Fact 2 (to believe): X = {2iv2i+1|i e N} ¥ 0

Fact 3: For each prime theory T 2 I" we have T + 0; thus Lindenbaum lemma fails
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The need for FGIP

)
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