(A bit more) abstract Lindenbaum lemma

Petr Cintula
Institute of Computer Science Czech Academy of Sciences

TACL 2022

The result in one page ...

The "original" abstract Lindenbaum Lemma
Let \vdash be a finitary consequence relation. Then the meet-irreducible theories form a basis of $\mathrm{Th}(\vdash)$.

The result in one page ...

The "original" abstract Lindenbaum Lemma
Let \vdash be a finitary consequence relation. Then the meet-irreducible theories form a basis of $\mathrm{Th}(\vdash)$.

The result in one page ...

$$
\begin{aligned}
& \text { The "original" abstract Lindenbaum Lemma } \\
& \text { Let } \stackrel{\text { be a finitary consequence relation. }}{\text { Then the meet-irreducible theories form a basis of } \mathrm{Th}(\vdash) \text {. }} \\
& \text { Lindenbaum Lemma for certain infinitary consequence relations } \\
& \text { Let } \stackrel{\text { be a consequence relation }}{ }
\end{aligned}
$$

Then the finitely meet-irreducible theories form a basis of $\mathrm{Th}(\vdash)$.

The result in one page ...

Abstract

The "original" abstract Lindenbaum Lemma Let $\stackrel{r}{ }$ be a finitary consequence relation. Then the meet-irreducible theories form a basis of $\mathrm{Th}(\vdash)$.

Lindenbaum Lemma for certain infinitary consequence relations
Let + be a consequence relation on a countable set of formulas such that

- + has a countable axiomatization,
- $\operatorname{Th}(\vdash)$ is a frame,
- the intersection of any two finitely generated theories is finitely generated.

Then the finitely meet-irreducible theories form a basis of $\mathrm{Th}(\vdash)$.

An example of infinitary many-valued logic

The standard MV-algebra $[\mathbf{0}, \mathbf{1}]_{\mathrm{E}}$ has the real unit interval $[0,1]$ as domain and operations $\rightarrow, \&, \vee$, and \neg interpreted as:

$$
\begin{aligned}
x \rightarrow y & =\min \{1,1-x+y\} & x \& y & =\max \{0, x+y-1\} \\
x \vee y & =\max \{x, y\} & \neg x & =1-x
\end{aligned}
$$

The logic of standard MV-algebra (a.k.a. infinitary Łukasiewicz logic):

$$
\Gamma \models_{\text {LSMVA }} \varphi \quad \text { iff } \quad\left(\forall e: \mathbf{F m} \rightarrow[\mathbf{0}, \mathbf{1}]_{\mathrm{E}}\right)(e[\Gamma] \subseteq\{1\} \Longrightarrow e(\varphi)=1)
$$

LSMVA is not finitary, e.g.:

$$
\begin{array}{lll}
\{\neg \varphi \rightarrow \varphi \& .!n . \& \varphi \mid n \geq 0\} & \vDash_{\text {LSMVA }} \varphi & \text { but } \\
\{\neg \varphi \rightarrow \varphi \& .!. \& \varphi \mid n \leq k\} \not \vDash_{\text {LSMVA }} \varphi & \text { for each } k
\end{array}
$$

Two examples of infinitary modal logics

- In PDL:

$$
\left\{\left[\alpha ; \beta^{n}\right] \varphi \mid n \in \mathbb{N}\right\} \vDash\left[\alpha ; \beta^{*}\right] \varphi
$$

- In logics of common knowledge:

$$
\left\{E^{n+1} \varphi \mid n \in \mathbb{N}\right\} \vDash C \varphi
$$

A statement, a question, and some answers

To find strongly complete axiomatization of a given logic we need (a variant of) Lindebaum lemma

Can we have it for infinitary logics?

A statement, a question, and some answers

To find strongly complete axiomatization of a given logic we need (a variant of) Lindebaum lemma

Can we have it for infinitary logics?
A very incomplete list of existing answers:
1963 Hay: (indirectly) for the Logic of Standard MV-Algebra
1977 Sundholm: for Von Wright's temporal logic
1993 Goldblatt: a general approach for modal logics with classical base
1994 Segerberg: a general method using saturated sets of formulas
2018 Bílková, Cintula, Lávička: a general method for certain algebraic logics

Consequence relations/logics

Fm: a countable set of formulas
A consequence relation \vdash is a relation between sets of formulas and formulas s.t.:

- $\{\varphi\} \vdash \varphi$
(Reflexivity)
- If $\Gamma \vdash \varphi$, then $\Gamma \cup \Delta \vdash \varphi$ (Monotonicity)
- If $\Gamma \vdash \varphi$ and $\Delta \vdash \psi$ for each $\psi \in \Gamma$, then $\Delta \vdash \varphi$

A consequence relation is

- finitary if: $\Gamma \vdash \varphi$ implies there is a finite $\Gamma^{\prime} \subseteq \Gamma$ s.t. $\Gamma^{\prime} \vdash \varphi$.
- structural (a.k.a. logic) if: $\Gamma \vdash \varphi$ implies $\sigma[\Gamma] \vdash \sigma(\varphi)$ for each substitution σ

CRs, COs, and CSs

Each CR determines a

- closure operator $\operatorname{Th}_{\vdash}(): \mathcal{P}(F m) \rightarrow \mathcal{P}(F m)$ defined as $\operatorname{Th}_{\vdash}(X)=\{a \mid X \vdash a\}$
- closure system $\operatorname{Th}(\vdash) \subseteq \mathcal{P}(F m)$ defined as $\operatorname{Th}(\vdash)=\left\{X \mid X=\operatorname{Th}_{\vdash}(X)\right\}$

CRs, COs, and CSs

Each CR determines a

- closure operator $\operatorname{Th}_{\vdash}(): \mathcal{P}(F m) \rightarrow \mathcal{P}(F m)$ defined as $\operatorname{Th}_{\vdash}(X)=\{a \mid X \vdash a\}$
- closure system $\operatorname{Th}(\vdash) \subseteq \mathcal{P}(F m)$ defined as $\operatorname{Th}(\vdash)=\left\{X \mid X=\operatorname{Th}_{\vdash}(X)\right\}$

An element of $\mathrm{Th}(\vdash)$ (a.k.a. a theory) is prime if it is not an intersection of two strictly bigger theories (i.e., it is finitely meet-irreducible)

CRs, COs, and CSs

Each CR determines a

- closure operator $\mathrm{Th}_{\vdash}(): \mathcal{P}(F m) \rightarrow \mathcal{P}(F m)$ defined as $\mathrm{Th}_{\vdash}(X)=\{a \mid X \vdash a\}$
- closure system $\operatorname{Th}(\vdash) \subseteq \mathcal{P}(F m)$ defined as $\operatorname{Th}(\vdash)=\left\{X \mid X=\operatorname{Th}_{\vdash}(X)\right\}$

An element of $\mathrm{Th}(\vdash)$ (a.k.a. a theory) is prime if it is not an intersection of two strictly bigger theories (i.e., it is finitely meet-irreducible)

A set X of theories is a basis of $\operatorname{Th}(\vdash)$ if (any of the following),

- Whenever $X \nvdash a$, then there is a $T \in \mathcal{X}$ such that $X \subseteq T$ and $a \notin T$.
- Each theory is the intersection of a system of theories from X.
- Each theory is the intersection of all theories from \mathcal{X} extending it.

1st ingredient: Countable axiomatization

A CR \vdash is countably axiomatizable if there is a countable set $\mathcal{A S} \subseteq \mathcal{P}(F m) \times F m$ st $X \vdash a$ iff there is a tree without infinite branches labeled by formulas st

- its root is labeled by a,
- if l is a label of some of its leafs, then $l \in X$ or $\emptyset \triangleright l \in \mathcal{A S}$,
- if a non-leaf is labeled by c and P is the set of labels of its direct predecessors, then $P \triangleright c \in \mathcal{A S}$.

1st ingredient: Countable axiomatization

Fact: each finitary CR (on countable set of formulas) is countably axiomatizable:

$$
\mathcal{A} \mathcal{S}=\{P \triangleright c \mid P \vdash c \text { and } P \text { is finite }\}
$$

1st ingredient: Countable axiomatization

Fact: each finitary CR (on countable set of formulas) is countably axiomatizable:

$$
\mathcal{A S}=\{P \triangleright c \mid P \vdash c \text { and } P \text { is finite }\}
$$

Not conversely: the logic E_{∞} given by Łukasiewicz 4 axioms, MP, and

$$
\{\neg \varphi \rightarrow \varphi \& . \stackrel{n}{.} \& \varphi \mid n \geq 0\} \triangleright \varphi \quad \text { (Hay rule) }
$$

is countably axiomatizable but not finitary as

$$
\Gamma \vdash_{\mathrm{L}_{\infty}} \varphi \quad \text { implies } \quad \Gamma \not \models_{\text {LSMVA }} \varphi .
$$

2nd ingredient: Nice lattice of theories

$\operatorname{Th}(\vdash)$ is domain of a complete lattice, where for $\boldsymbol{y} \subseteq \operatorname{Th}(\vdash)$ we have:

$$
\bigwedge y=\bigcap y \quad \bigvee y=\operatorname{Th}_{+}(\bigcup y)
$$

2nd ingredient: Nice lattice of theories

$\mathrm{Th}(\vdash)$ is domain of a complete lattice, where for $\boldsymbol{y} \subseteq \operatorname{Th}(\vdash)$ we have:

$$
\bigwedge y=\bigcap y \quad V y=\operatorname{Th}_{\vdash}(\bigcup y)
$$

$\operatorname{Th}(\vdash)$ is a frame if for each $\{X\} \cup \mathcal{Y} \subseteq \operatorname{Th}(\vdash)$:

$$
X \cap \bigvee y=\bigvee_{Y \in \mathcal{Y}}(X \wedge Y)
$$

2nd ingredient: Nice lattice of theories

$\operatorname{Th}(\vdash)$ is domain of a complete lattice, where for $\boldsymbol{y} \subseteq \operatorname{Th}(\vdash)$ we have:

$$
\bigwedge y=\bigcap y \quad V y=\operatorname{Th}_{\vdash}(\bigcup y)
$$

$\operatorname{Th}(\vdash)$ is a frame if for each $\{X\} \cup \mathcal{Y} \subseteq \operatorname{Th}(\vdash)$:

$$
X \cap \bigvee y=\bigvee_{Y \in \mathcal{Y}}(X \wedge Y)
$$

Fact: If \vdash is finitary, then $\mathrm{Th}(\vdash)$ is frame iff it is distributive.
Fact (to be believed): $\operatorname{Th}\left(\vdash_{\mathrm{L}_{\infty}}\right)$ is a frame.
Recall that ${\stackrel{\iota_{\infty}}{ }}$ is not finitary!

3rd ingredient: Disguised disjunctions

A CR has FGIP if the intersection of any two finitely generated theories is finitely generated

Fact: $\operatorname{Th}_{r_{\mathrm{L}_{\infty}}}(X) \cap \operatorname{Th}_{\vdash_{\mathrm{L}_{\infty}}}(Y)=\operatorname{Th}_{r_{\mathrm{L}_{\infty}}}(\{x \vee y \mid x \in X, y \in Y\})$

3rd ingredient: Disguised disjunctions

A CR has FGIP if the intersection of any two finitely generated theories is finitely generated

$$
\text { Fact: } \operatorname{Th}_{\vdash_{\mathrm{L}_{\infty}}}(X) \cap \operatorname{Th}_{\vdash_{\mathrm{L}_{\infty}}}(Y)=\operatorname{Th}_{\vdash_{\mathrm{L}_{\infty}}}(\{x \vee y \mid x \in X, y \in Y\}) \Longrightarrow \vdash_{\mathrm{E}_{\infty}} \text { has FGIP }
$$

3rd ingredient: Disguised disjunctions

A CR has FGIP if the intersection of any two finitely generated theories is finitely generated

Fact: $\operatorname{Th}_{\vdash_{\mathrm{L}_{\infty}}}(X) \cap \mathrm{Th}_{\vdash_{\mathrm{L}_{\infty}}}(Y)=\mathrm{Th}_{\vdash_{\mathrm{L}_{\infty}}}(\{x \vee y \mid x \in X, y \in Y\}) \Longrightarrow \vdash_{\mathrm{E}_{\infty}}$ has FGIP

For a CR \vdash with FGIP, then there is a function $\nabla: F m \times F m \rightarrow \mathcal{P}_{\mathrm{fin}}(F m)$ st.:

$$
\operatorname{Th}_{\vdash}(x) \cap \operatorname{Th}_{\vdash}(y)=\operatorname{Th}_{\vdash}(x \nabla y) .
$$

3rd ingredient: Disguised disjunctions

A CR has FGIP if the intersection of any two finitely generated theories is finitely generated

Fact: $\operatorname{Th}_{\vdash_{\mathrm{L}_{\infty}}}(X) \cap \mathrm{Th}_{\vdash_{\mathrm{E}_{\infty}}}(Y)=\operatorname{Th}_{\vdash_{\mathrm{L}_{\infty}}}(\{x \vee y \mid x \in X, y \in Y\}) \Longrightarrow \vdash_{\mathrm{L}_{\infty}}$ has FGIP

For a CR \vdash with FGIP, then there is a function $\nabla: F m \times F m \rightarrow \mathcal{P}_{\mathrm{fin}}(F m)$ st.:

$$
\operatorname{Th}_{\vdash}(x) \cap \mathrm{Th}_{\vdash}(y)=\mathrm{Th}_{\vdash}(x \nabla y) .
$$

Fact: if $\mathrm{Th}(\vdash)$ is distributive, then

- existence of any such function ∇ implies FGIP
- (for any such function ∇) a theory T is prime iff

$$
x \nabla y \subseteq T \quad \text { implies } \quad x \in T \text { or } y \in T \quad \text { (for each } x, y \text {) }
$$

The main result

Lindenbaum Lemma for certain infinitary consequence relations
Let + be a consequence relation on a countable set of formulas such that

- + has a countable axiomatization,
- $\operatorname{Th}(\vdash)$ is a frame,
- the intersection of any two finitely generated theories is finitely generated.

Then the prime theories form a basis of $\mathrm{Th}(\vdash)$.

The proof - preparation: a relation $\Vdash \subseteq \mathcal{P}(F m) \times \mathcal{P}_{\text {fin }}(F m)$

$$
X \Vdash Y \quad \text { iff } \quad \bigcap_{y \in Y} \operatorname{Th}_{\vdash}(y) \subseteq \operatorname{Th}_{\vdash}(X) .
$$

If $\mathrm{Th}(\vdash)$ is a frame, then

$$
\frac{\{X \Vdash Y \cup\{p\} \mid p \in P\}}{X \Vdash Y}
$$

The proof - preparation: a relation $\Vdash \subseteq \mathcal{P}(F m) \times \mathcal{P}_{\text {fin }}(F m)$

$$
X \Vdash Y \quad \text { iff } \quad \bigcap_{y \in Y} \operatorname{Th}_{\vdash}(y) \subseteq \operatorname{Th}_{\vdash}(X) .
$$

If $\mathrm{Th}(\vdash)$ is a frame, then

$$
\frac{\{X \Vdash Y \cup\{p\} \mid p \in P\}}{X \Vdash Y}
$$

Set $W=\bigcap_{y \in Y} \operatorname{Th}_{\vdash}(y)$ we need to show that $W \subseteq \operatorname{Th}_{\vdash}(X)$

$$
W \cap \operatorname{Th}_{\vdash}(P)=W \cap \bigvee_{p \in P}\left(\operatorname{Th}_{\vdash}(p)\right)=\bigvee_{p \in P}\left(W \cap \operatorname{Th}_{\vdash}(p)\right) \subseteq \operatorname{Th}_{\vdash}(X)
$$

The proof - preparation: a relation $\Vdash \subseteq \mathcal{P}(F m) \times \mathcal{P}_{\text {fin }}(F m)$

$$
X \Vdash Y \quad \text { iff } \quad \bigcap_{y \in Y} \operatorname{Th}_{\vdash}(y) \subseteq \operatorname{Th}_{\vdash}(X) .
$$

If $\mathrm{Th}(\vdash)$ is a frame, then

$$
\frac{\{X \Vdash Y \cup\{p\} \mid p \in P\}}{X \Vdash Y}
$$

Set $W=\bigcap_{y \in Y} \operatorname{Th}_{\vdash}(y)$ we need to show that $W \subseteq \operatorname{Th}_{\vdash}(X)$

$$
W \cap \operatorname{Th}_{\vdash}(P)=W \cap \bigvee_{p \in P}\left(\operatorname{Th}_{\vdash}(p)\right)=\bigvee_{p \in P}\left(W \cap \operatorname{Th}_{\vdash}(p)\right) \subseteq \operatorname{Th}_{\vdash}(X)
$$

$\operatorname{Th}_{\vdash}(X)=\left(W \cap \operatorname{Th}_{\vdash}(P)\right) \vee \operatorname{Th}_{\vdash}(X)=\left(W \vee \operatorname{Th}_{\vdash}(X)\right) \cap\left(\operatorname{Th}_{\vdash}(P) \vee \operatorname{Th}_{\vdash}(X)\right)$ $\supseteq\left(W \vee \operatorname{Th}_{\vdash}(X)\right) \cap W=W$

The proof - assume that $X \nvdash x$

Construct sequences $X=X_{0} \subseteq X_{1} \subseteq \ldots$ and $\{x\}=Y_{0} \subseteq Y_{1} \subseteq \ldots$ st. $X_{i} \nVdash Y_{i}$:

$$
\left\langle X_{i+1}, Y_{i+1}\right\rangle= \begin{cases}\left\langle X_{i} \cup\left\{c_{i}\right\}, Y_{i}\right\rangle & \text { if } X_{i} \cup\left\{c_{i}\right\} \nVdash Y_{i} \\ \left\langle X_{i}, Y_{i} \cup\{p\}\right\rangle & \text { for some } p \in P_{i} \text { st. } X_{i} \nVdash Y_{i} \cup\{p\} \text { otherwise }\end{cases}
$$

The proof - assume that $X \nvdash x$
Enumerate rules of any $\mathcal{A} \mathcal{S}$ of \vdash as $P_{i} \triangleright c_{i}$; assume that $\{y\} \triangleright y \in \mathcal{A} \mathcal{S}$ for each y Construct sequences $X=X_{0} \subseteq X_{1} \subseteq \ldots$ and $\{x\}=Y_{0} \subseteq Y_{1} \subseteq \ldots$ st. $X_{i} \nVdash Y_{i}$:

$$
\left\langle X_{i+1}, Y_{i+1}\right\rangle= \begin{cases}\left\langle X_{i} \cup\left\{c_{i}\right\}, Y_{i}\right\rangle & \text { if } X_{i} \cup\left\{c_{i}\right\} \nVdash Y_{i} \\ \left\langle X_{i}, Y_{i} \cup\{p\}\right\rangle & \text { for some } p \in P_{i} \text { st. } X_{i} \nVdash Y_{i} \cup\{p\} \text { otherwise }\end{cases}
$$

indeed such p has to exist (because $\operatorname{Th}(\vdash)$ if a frame):

$$
\frac{\frac{\left\{X_{i} \Vdash Y_{i} \cup\{p\} \mid p \in P_{i}\right\}}{\frac{\left\{X_{i} \Vdash Y_{i} \cup\left\{c_{i}\right\} \cup\{p\} \mid p \in P_{i}\right\}}{}} \frac{P_{i} \Vdash\left\{c_{i}\right\}}{X_{i} \cup P_{i} \Vdash Y_{i} \cup\left\{c_{i}\right\}}}{X_{i} \Vdash Y_{i} \cup\left\{c_{i}\right\}} \quad X_{i} \cup\left\{c_{i}\right\} \Vdash Y_{i} .
$$

The proof - assume that $X \nvdash x$

Construct sequences $X=X_{0} \subseteq X_{1} \subseteq \ldots$ and $\{x\}=Y_{0} \subseteq Y_{1} \subseteq \ldots$ st. $X_{i} \nVdash Y_{i}$:

$$
\left\langle X_{i+1}, Y_{i+1}\right\rangle= \begin{cases}\left\langle X_{i} \cup\left\{c_{i}\right\}, Y_{i}\right\rangle & \text { if } X_{i} \cup\left\{c_{i}\right\} \nVdash Y_{i} \\ \left\langle X_{i}, Y_{i} \cup\{p\}\right\rangle & \text { for some } p \in P_{i} \text { st. } X_{i} \nVdash Y_{i} \cup\{p\} \text { otherwise }\end{cases}
$$

Fact: $X^{\prime}=\bigcup X_{i}$ is a theory.

The proof - assume that $X \nvdash x$

Construct sequences $X=X_{0} \subseteq X_{1} \subseteq \ldots$ and $\{x\}=Y_{0} \subseteq Y_{1} \subseteq \ldots$ st. $X_{i} \nVdash Y_{i}$:

$$
\left\langle X_{i+1}, Y_{i+1}\right\rangle= \begin{cases}\left\langle X_{i} \cup\left\{c_{i}\right\}, Y_{i}\right\rangle & \text { if } X_{i} \cup\left\{c_{i}\right\} \nVdash Y_{i} \\ \left\langle X_{i}, Y_{i} \cup\{p\}\right\rangle & \text { for some } p \in P_{i} \text { st. } X_{i} \nVdash Y_{i} \cup\{p\} \text { otherwise }\end{cases}
$$

Fact: $X^{\prime}=\bigcup X_{i}$ is a theory. Assume that $X^{\prime} \vdash y$ and fix a proof of y from X^{\prime}
We prove for each node that its label $l \in X_{i}$ for some i.
If it is a leaf and $l \in X^{\prime}$, then it is trivial

$$
\text { and } \emptyset \triangleright l \text {, then } l=c_{i} \text { for some } i \text { and so } l \in X_{i}
$$

The proof - assume that $X \nvdash x$

Construct sequences $X=X_{0} \subseteq X_{1} \subseteq \ldots$ and $\{x\}=Y_{0} \subseteq Y_{1} \subseteq \ldots$ st. $X_{i} \nVdash Y_{i}$:

$$
\left\langle X_{i+1}, Y_{i+1}\right\rangle= \begin{cases}\left\langle X_{i} \cup\left\{c_{i}\right\}, Y_{i}\right\rangle & \text { if } X_{i} \cup\left\{c_{i}\right\} \nVdash Y_{i} \\ \left\langle X_{i}, Y_{i} \cup\{p\}\right\rangle & \text { for some } p \in P_{i} \text { st. } X_{i} \nVdash Y_{i} \cup\{p\} \text { otherwise }\end{cases}
$$

Fact: $X^{\prime}=\bigcup X_{i}$ is a theory. Assume that $X^{\prime} \vdash y$ and fix a proof of y from X^{\prime}
We prove for each node that its label $l \in X_{i}$ for some i.
Otherwise there is a rule $P_{i} \triangleright c_{i}$ st $l=c_{i}$ and each $p \in P$ is in X_{j} for some j
(due to IH)
1st option $\Longrightarrow l=c_{i} \in X_{i+1}$

The proof - assume that $X \nvdash x$

Construct sequences $X=X_{0} \subseteq X_{1} \subseteq \ldots$ and $\{x\}=Y_{0} \subseteq Y_{1} \subseteq \ldots$ st. $X_{i} \nVdash Y_{i}$:

$$
\left\langle X_{i+1}, Y_{i+1}\right\rangle= \begin{cases}\left\langle X_{i} \cup\left\{c_{i}\right\}, Y_{i}\right\rangle & \text { if } X_{i} \cup\left\{c_{i}\right\} \nVdash Y_{i} \\ \left\langle X_{i}, Y_{i} \cup\{p\}\right\rangle & \text { for some } p \in P_{i} \text { st. } X_{i} \nVdash Y_{i} \cup\{p\} \text { otherwise }\end{cases}
$$

Fact: $X^{\prime}=\bigcup X_{i}$ is a theory. Assume that $X^{\prime} \vdash y$ and fix a proof of y from X^{\prime}
We prove for each node that its label $l \in X_{i}$ for some i.
Otherwise there is a rule $P_{i} \triangleright c_{i}$ st $l=c_{i}$ and each $p \in P$ is in X_{j} for some j
(due to IH)
1st option $\Longrightarrow l=c_{i} \in X_{i+1}$
2nd option \Longrightarrow there is $p \in P_{i}$ and j st $p \in Y_{i+1} \cap X_{j} \subseteq Y_{\max \{i+1, j\}} \cap X_{\max \{i+1, j\}}$

The proof - assume that $X \nvdash x$

Construct sequences $X=X_{0} \subseteq X_{1} \subseteq \ldots$ and $\{x\}=Y_{0} \subseteq Y_{1} \subseteq \ldots$ st. $X_{i} \nVdash Y_{i}$:

$$
\left\langle X_{i+1}, Y_{i+1}\right\rangle= \begin{cases}\left\langle X_{i} \cup\left\{c_{i}\right\}, Y_{i}\right\rangle & \text { if } X_{i} \cup\left\{c_{i}\right\} \nVdash Y_{i} \\ \left\langle X_{i}, Y_{i} \cup\{p\}\right\rangle & \text { for some } p \in P_{i} \text { st. } X_{i} \nVdash Y_{i} \cup\{p\} \text { otherwise }\end{cases}
$$

Fact: $X^{\prime}=\bigcup X_{i}$ is a prime theory.

The proof - assume that $X \nvdash x$
Enumerate rules of any $\mathcal{A} \mathcal{S}$ of \vdash as $P_{i} \triangleright c_{i}$; assume that $\{y\} \triangleright y \in \mathcal{A} \mathcal{S}$ for each y
Construct sequences $X=X_{0} \subseteq X_{1} \subseteq \ldots$ and $\{x\}=Y_{0} \subseteq Y_{1} \subseteq \ldots$ st. $X_{i} \nVdash Y_{i}$:

$$
\left\langle X_{i+1}, Y_{i+1}\right\rangle= \begin{cases}\left\langle X_{i} \cup\left\{c_{i}\right\}, Y_{i}\right\rangle & \text { if } X_{i} \cup\left\{c_{i}\right\} \nVdash Y_{i} \\ \left\langle X_{i}, Y_{i} \cup\{p\}\right\rangle & \text { for some } p \in P_{i} \text { st. } X_{i} \nVdash Y_{i} \cup\{p\} \text { otherwise }\end{cases}
$$

Fact: $X^{\prime}=\bigcup X_{i}$ is a prime theory.

Otherwise there are theories U_{1} and U_{2}, elements $u_{i} \in U_{i} \backslash X$ and a finite set U st.

$$
U \subseteq \operatorname{Th}_{\vdash}(U)=\operatorname{Th}_{\vdash}\left(u_{1}\right) \cap \operatorname{Th}_{\vdash}\left(u_{2}\right) \subseteq U_{1} \cap U_{2}=X
$$

The proof - assume that $X \nvdash x$

Construct sequences $X=X_{0} \subseteq X_{1} \subseteq \ldots$ and $\{x\}=Y_{0} \subseteq Y_{1} \subseteq \ldots$ st. $X_{i} \nVdash Y_{i}$:

$$
\left\langle X_{i+1}, Y_{i+1}\right\rangle= \begin{cases}\left\langle X_{i} \cup\left\{c_{i}\right\}, Y_{i}\right\rangle & \text { if } X_{i} \cup\left\{c_{i}\right\} \nVdash Y_{i} \\ \left\langle X_{i}, Y_{i} \cup\{p\}\right\rangle & \text { for some } p \in P_{i} \text { st. } X_{i} \nVdash Y_{i} \cup\{p\} \text { otherwise }\end{cases}
$$

Fact: $X^{\prime}=\bigcup X_{i}$ is a prime theory.
Otherwise there are theories U_{1} and U_{2}, elements $u_{i} \in U_{i} \backslash X^{\prime}$ and a finite set U st.

$$
U \subseteq \operatorname{Th}_{\vdash}(U)=\operatorname{Th}_{\vdash}\left(u_{1}\right) \cap \operatorname{Th}_{\vdash}\left(u_{2}\right) \subseteq U_{1} \cap U_{2}=X^{\prime}
$$

Thus there is i st. $U \subseteq X_{i}$ and $u_{1}, u_{2} \in Y_{i}$ and so $X_{i} \Vdash Y_{i}$, a contradiction:

$$
\bigcap_{y \in Y_{i}} \operatorname{Th}_{\vdash}(y) \subseteq \operatorname{Th}_{\vdash}\left(u_{1}\right) \cap \operatorname{Th}_{\vdash}\left(u_{2}\right)=\mathrm{Th}_{\vdash}(U) \subseteq \operatorname{Th}_{\vdash}\left(X_{i}\right)
$$

The need for frames

Consider a CR \vdash on the set $F m=\mathbb{N}$ given by countable set of rules:

$$
\{i \mid i>n\} \triangleright n \quad \text { (for } n \geq 0 \text {) }
$$

Fact 1: X is a theory iff $X=F m$ or $F m \backslash X$ is infinite
Fact 2: X is finitely generated iff X is finite; and so $\stackrel{\text { has FGIP. }}{\text {. }}$
Fact 3: $F m$ is the only prime theory
Thus Lindenbaum lemma has to fail and $\mathrm{Th}(\vdash)$ is not a frame.

The need for countable axiomatization

Consider propositional language with $\mathrm{\vee}$, and a constant i for each $i \in \mathbb{N}$.
Let $\stackrel{\text { be the expansion of the disjunction-fragment of classical logic by: }}{\text { b }}$

$$
\{\mathbf{i} \vee \chi \mid i \in C\} \triangleright \chi
$$

for each infinite set $C \subseteq \mathbb{N}$ and a formula χ.

Fact 1 (to believe): $\mathrm{Th}(\vdash)$ is a frame and $\stackrel{\text { has FGIP }}{ }$

$$
\text { (as } \left.\operatorname{Th}_{\vdash}(\chi) \cap \operatorname{Th}_{\vdash}(\psi)=\operatorname{Th}_{\vdash}(\chi \vee \psi)\right)
$$

Fact 2 (to believe): $X=\{2 \mathbf{i} \vee 2 \mathbf{i}+\mathbf{1} \mid i \in \mathbb{N}\} \nvdash \mathbf{0}$
Fact 3: For each prime theory $T \supseteq \Gamma$ we have $T \vdash \mathbf{0}$; thus Lindenbaum lemma fails

The need for FGIP

?

