On varieties of residuated po-magmas and the structure of finite involutive po-semilattices

Peter Jipsen and Melissa Sugimoto

Chapman University and Universiteit Leiden

TACL 2022: Topology, Algebra and Categories in Logic Coimbra, June 20-24, 2022

Peter Jipsen and Melissa Sugimoto

Partially ordered algebras

A **po-algebra** is a partially ordered set with operations that are either order-preserving **or order-reversing** in each argument.

A variety of po-algebras is a class of similar po-algebras defined by equations or inequations [Pigozzi 2004].

A residuated partially ordered magma or rpo-magma $\mathbf{A} = (A, \leq, \cdot, \setminus, /)$ is a partially-ordered set (A, \leq) with a binary operation \cdot and two **residuals** that satisfy for all $x, y, z \in A$

$$(\mathsf{res}) \quad xy \leq z \iff x \leq z/y \iff y \leq x \backslash z$$

The operation $x \cdot y$ is usually written xy.

Peter Jipsen and Melissa Sugimoto

Residuated po-magmas are a po-variety

Residuation ensures that x/y and $y \setminus x$ are order-preserving in the numerator (x position) and **order-reversing** in the denominator.

xy is order-preserving in both arguments.

(res) is equivalent to $x \le xy/y$, $(z/y)y \le z$, $y \le x \setminus xy$, $x(x \setminus z) \le z$ hence rpo-magmas are a variety of po-algebras.

Although rpo-magmas are very general, (res) imposes restrictions on the posets that can occur.

E.g. could
$$\checkmark$$
 be the poset of a rpo-magma 3

Lemma

For rpo-magmas, if $a, b \leq c$ then $(a/(a \setminus c))((c/(a \setminus c)) \setminus b) \leq a, b$.

				C
Ρ	r	\sim	0	÷.
		U	U	ι.

Assume $a \leq c$.	Then	$a/(aackslash c) \leq c/(aackslash c)$
\implies		$(c/(a ackslash c)) ackslash b \leq (a/(a ackslash c)) ackslash b$
\iff	(a/(aackslash c))((a	$(c/(a \setminus c)) \setminus b) \leq b$
Assume $b \leq c$.	Then	$aackslash c \leq aackslash c$
\iff		$a(aackslash c) \leq c$
\iff		$a \leq c/(a ackslash c)$
\Rightarrow		$(c/(a ackslash c)) ackslash b \leq a ackslash c$
\implies		$a/(aackslash c) \leq a/((c/(aackslash c))ackslash b)$
\iff	$(a/(a \setminus c))((a \setminus c))$	$(c/(aackslash c))ackslash b)\leq a$

Peter Jipsen and Melissa Sugimoto

Finite rpo-magmas have bounded components

Lemma

In any rpo-magma, if $d \le a, b$ then $a, b \le d/(((a \setminus d)/(a \setminus (d \setminus d)))((d \setminus d)/(a \setminus (d \setminus d))) \setminus (b \setminus d)))$

Theorem

In an rpo-magma every connected component of \leq is up-directed and down-directed, hence for **finite** rpo-magmas every connected component is **bounded**.

Proof.

Two elements x, y in a poset are connected iff there exists a zigzag

$$x \circ \begin{array}{c} z_1 \circ z_3 \circ z_5 & z_{n-1} \circ y \\ z_2 \circ z_4 & \cdots & z_n \end{array}$$

We need to find an upper and a lower bound of x, y.

Peter Jipsen and Melissa Sugimoto

Proof (continued).

Continue by induction to get an upper and lower bound in *n* steps.

Peter Jipsen and Melissa Sugimoto

What posets are possible for ipo-magmas?

Theorem

The equivalence relation on a poset that has each connected component as an equivalence class is a congruence on a rpo-magma, and the quotient algebra is a **quasigroup** with the discrete order (i.e. \leq is the equality relation).

Conversely, from any group or quasigroup Q and a pair-wise disjoint family of **bounded** posets A_q for $q \in Q$, one can construct an rpo-magma with poset $\bigcup_{a \in Q} A_q$.

E.g. for a group Q and $x_p \in A_p$, $y_q \in A_q$ define

$$x_p \cdot y_q = \perp_{pq}, \qquad x_p \setminus y_q = \top_{p^{-1}q}, \qquad x_p / y_q = \top_{pq^{-1}}.$$

Peter Jipsen and Melissa Sugimoto

Residuated po-semigroups

A **rpo-semigroup** or **Lambek algebra** is a rpo-magma where \cdot is associative.

Note: If the order is an antichain then a rpo-semigroup is a group.

A unital rpo-magma has a constant 1 such that x1 = x = 1x, and a **rpo-monoid** is a unital rpo-semigroup $(A, \leq, \cdot, \sim, -, 1)$.

A residuated lattice-ordered magma $(A, \land, \lor, \cdot, \backslash, /)$ (or **r** ℓ -magma for short) is a rpo-magma for which the partial order is a lattice order.

A $r\ell$ -monoid is more commonly called a **residuated lattice** or **unital quantale** (if it is a complete lattice).

Peter Jipsen and Melissa Sugimoto

Involutive po-magmas

An **involutive po-magma** or **ipo-magma** $(A, \leq, \cdot, \sim, -)$ is a poset (A, \leq) with a binary operation \cdot , two unary **order-reversing operations** \sim , - that are an **involutive pair**: $\sim -x = x = -\sim x$, and for all $x, y, z \in A$

(ires)
$$xy \le z \iff x \le -(y \cdot \sim z) \iff y \le \sim (-z \cdot x).$$

It follows that ipo-magmas are **rpo-magmas**.

Hence · is order-preserving and ipo-magmas are a **po-variety**.

Models of cardinality $n =$	1	2	3	4	5	6
rpo-magmas	1	3	28	1200		
ipo-magmas	1	4	12	67	314	3029

Peter Jipsen and Melissa Sugimoto

Involutive po-magmas

A convenient **equivalent** formulation of (ires):

$$(\mathsf{rotate}) \quad xy \leq z \iff y \cdot \sim z \leq \sim x \iff -z \cdot x \leq -y.$$

The po-variety of ipo-monoids includes all partially ordered groups where $\sim x = -x = x^{-1}$.

Lemma

Let $\mathbf{A} = (A, \leq, \cdot, \sim, -)$ be a poset with a binary operation and two unary operations.

- If · is idempotent (i.e. xx = x) and A satisfies (rotate) then
 A is an ipo-magma.
- If an ipo-magma is idempotent or unital, and \cdot is commutative then $\sim x = -x$.

Peter Jipsen and Melissa Sugimoto

Involutive po-semilattices

An **ipo-semilattice** $(A, \leq, \cdot, -)$ is an ipo-magma where \cdot is associative, commutative and idempotent.

In an ipo-semilattice there is another partial order \sqsubseteq called the **multiplicative order**, defined by $x \sqsubseteq y \iff xy = x$.

Examples of ipo-semilattices: Boolean algebras $(A, \leq, \cdot, -)$, where join is $-(-x \cdot -y)$.

They form a **po-subvariety** defined by $x \cdot -x \leq y \cdot -y$.

More generally, ipo-semilattices can be visualized by the two Hasse diagrams for \leq, \sqsubseteq

Peter Jipsen and Melissa Sugimoto

Visualizing ipo-semilattices

Figure: Partial order and multiplicative order of the smallest ipo-semilattice that does not have an identity element.

Figure: Smallest ipo-semilattice that is not lattice-ordered.

Peter Jipsen and Melissa Sugimoto

Unital involutive po-semilattices

An element t in an ipo-semilattice is the **multiplicative identity** iff t is the top element in the multiplicative order.

Hence an ipo-semilattice is **unital** if and only if the multiplicative order has a **top element**.

Sugihara monoid reducts without \land, \lor are unital ipo-semilattices.

For finite commutative idempotent involutive residuated lattices (i.e. finite unital $i\ell$ -semilattices) a structural description has been given by [J., Tuyt, Valota 2021].

Structural description for ipo-semilattices

We give a description of ipo-semilattices based on **Płonka sums of Boolean algebras**.

Similar methods are used by Jenei [2022] to describe the structure of **even and odd involutive commutative residuated chains**.

Inspired by a duality for involutive bisemilattices by Bonzio, Loi, Peruzzi [2019], we give a more compact dual description of finite ipo-semilattices based on **semilattice direct systems of partial maps between sets**.

Lemma 1

Let A be a **residuated po-semilattice** and let $x, y \in A$ such that $x \setminus x = y \setminus y$. Then

$$0 \ x \sqsubseteq y \iff x \le y,$$

$$x \setminus x = xy \setminus xy,$$

3 if
$$y \setminus y = z \setminus z$$
 then $x \setminus x = yz \setminus yz$, and

$$if y \sqsubseteq z \sqsubseteq x \setminus x \text{ then } x \setminus x = z \setminus z.$$

Peter Jipsen and Melissa Sugimoto

pman University and Universiteit Leiden

Defining an Equivalence Relation

Define an equivalence relation \equiv on A by $x \equiv y \iff x \setminus x = y \setminus y$. Part (1) of the previous lemma shows that the partial order \leq and the semilattice order \sqsubseteq agree on each equivalence class of \equiv .

The term $x \setminus x$ is denoted by 1_x .

Lemma 2

Let A be an rpo-semilattice and define \equiv as above. Then each equivalence class of \equiv is a semilattice $([x]_{\equiv}, \cdot)$ with identity element 1_x .

Note: In an ipo-semilattice $1_x = x \setminus x = -(x \cdot -x)$.

Peter Jipsen and Melissa Sugimoto

In an ipo-semilattice define $0_x = -1_x$ or equivalently $0_x = x \cdot -x$.

Lemma 3

Let A be an ipo-semilattice and define

$$\mathbb{B}_{x} = \{ a \in A \mid 0_{x} \sqsubseteq a \sqsubseteq 1_{x} \}.$$

Then

• the intervals \mathbb{B}_x are closed under negation, i.e., $y \in \mathbb{B}_x \implies -y \in \mathbb{B}_x$,

$$\ \textbf{ 0} \ \ x \sqsubseteq y \ \ \text{implies} \ \ 0_x \sqsubseteq 0_y \ \ \text{and} \ \ 0_x \leq 0_y,$$

$$0_{x} \sqsubseteq 0_{y} \text{ if and only if } 0_{x} \leq 0_{y},$$

•
$$x \sqsubseteq y$$
 implies $1_x \sqsubseteq 1_y$, and

$$1_x \cdot 1_y = 1_{xy}.$$

Peter Jipsen and Melissa Sugimoto

pman University and Universiteit Leiden

ipo-semilattices are unions of Boolean algebras

Define
$$x + y = -(-y \cdot -x)$$
.

Theorem 1. Partition by Boolean Algebras

Given an ipo-semilattice A, the semilattice intervals $(\mathbb{B}_x, \cdot, +, -, 0_x, 1_x)$ are Boolean algebras and they **partition** A.

Figure: (Right) unital ipo-semilattice that is **not** an $i\ell$ -semilattice.

The Boolean components are denoted by **thick lines** and are connected by homomorphisms (thin lines). For CldInRL the above theorem is due to [J., Tuyt, Valota 2021].

Peter Jipsen and Melissa Sugimoto

Note: A finite $i\ell$ -semilattice is a (nonunital) **commutative idempotent involutive (i.e. Frobenius) quantale**. Now we can construct all these algebras (only \sqsubseteq is shown):

Peter Jipsen and Melissa Sugimoto

Subdirectly irreducible unital i ℓ -semilattices

Lemma

Let **A** be a unital ipo-semilattice. If $0_x = 1_x$ then x = 1, hence all Boolean components except possibly the top one are nontrivial.

A unital ipo-semilattice is called **odd** if it satisfies the identity -1 = 1 (i.e., 0 = 1).

Theorem 2.

A finite unital ipo-semilattice **A** is odd if and only if |A| is odd.

A finite unital i ℓ -semilattice **A** is subdirectly irreducible if and only if 1 has a unique coatom in the monoidal order.

 $\# \text{ of elem. } n = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \\ unital \ i\ell\text{-semilats} \ 1 \ 1 \ 1 \ 2 \ 2 \ 4 \ 4 \ 9 \ 10 \ 21 \ 22 \ 49 \ 52 \ 114 \ 121 \ 270 \\ subdir. \ irreducible \ 0 \ 1 \ 1 \ 1 \ 2 \ 2 \ 4 \ 9 \ 10 \ 21 \ 22 \ 49 \ 52 \ 114 \ 121 \\$

Peter Jipsen and Melissa Sugimoto

Subvarieties of unital il-semilattices

Peter Jipsen and Melissa Sugimoto

Theorem 3.

Let **A** be an $i\ell$ -semilattice. Then for every $x \in A$ the multiplicative downset of 1_x is a **unital** sub- $i\ell$ -semilattice.

Proof

- Let A_x denote the multiplicative downset of 1_x. If y · 1_x = y and z · 1_x = z then (y ∨ z) · 1_x = (y · 1_x) ∨ (z · 1_x) = y ∨ z since · distributes over ∨. Therefore A_x is closed under join.
- Each Boolean component is closed under -, so it is clear that **A**_x is closed under -.
- By DeMorgan laws, closure under and ∨ guarantees closure under ∧.

Therefore \mathbf{A}_{x} is a sub-i ℓ -semilattice.

Figure: An 8-element $i\ell$ -semilattice. Its multiplicative order shows its unital sub-i ℓ -semilattices.

Peter Jipsen and Melissa Sugimoto

nan University and Universiteit Leiden

Semilattice direct systems and Płonka sums

A semilattice direct system (or sd-system for short) is a triple $\mathbf{B} = (\mathbf{B}_i, h_{ij}, I)$ such that

- I is a semilattice,
- {B_i : i ∈ l} is a family of algebras of the same type with disjoint universes,
- $h_{ij}: \mathbf{B}_i \to \mathbf{B}_j$ is a homomorphism for all $i \ge j \in I$ such that h_{ii} is the identity on \mathbf{B}_i and for all $i \ge j \ge k$, $h_{jk} \circ h_{ij} = h_{ik}$.

The **Płonka sum** over **B** is the algebra $P_{\mathsf{f}}(\mathsf{B}) = \bigcup_{i \in I} \mathsf{B}_i$ with each fundamental operation g^{B} defined by

$$g^{\mathbf{B}}(b_{i_1},\ldots,b_{i_n})=g^{\mathbf{B}_j}(h_{i_1j}(b_{i_1}),\ldots,h_{i_nj}(b_{i_n}))$$

where $b_{i_k} \in \mathbf{B}_{i_k}$ and $j = i_1 \cdots i_n$ is the semilattice meet of $i_1, \ldots, i_n \in I$.

Peter Jipsen and Melissa Sugimoto

il-semilattices are multiplicative Płonka sums

Theorem 4.

Let **A** be an i ℓ -semilattice, and define $I = (\{1_x \mid x \in A\}, \cdot)$. Then

- B = (B_i, h_{ij}, I) is a sd-system of Boolean algebras, where each h_{ij} : B_i → B_j is a generalized Boolean algebra homomorphism (i.e., mapping 1_i to 1_j but not 0_i to 0_j) defined by h_{ij}(x) = x ⋅ j,
- 2 the image $h_{ij}[\mathbb{B}_i]$ is a proper filter,
- the Płonka sum P_t(B) reconstructs the reduct algebra (A, ·, -).

Reconstructing the lattice order takes more work.

Colimits of finite unital sub-il-semilattices

Theorem 5.

Let **A** be a finite $i\ell$ -semilattice, define $I = (\{1_x \mid x \in A\}, \cdot)$ and let A_i be the multiplicative downset of $i \in I$. Then $\{A_i : i \in I\}$ is a system of finite unital subalgebras of A such that $A_i \cap A_j = A_{ij}$ and $A = \sum_{i \in I} A_i$.

By [J., Tuyt, Valota 2021] each finite unital $i\ell$ -semilattice is determined by its monoidal semilattice, so the above theorem extends this result to nonunital $i\ell$ -semilattices.

The same result is conjectured to hold for ipo-semilattices.

Peter Jipsen and Melissa Sugimoto

On varieties of residuated po-magmas and the structure of finite involutive po-semilattices

Partial Functions

Definition. A proper partial function $f : X \to Y$ is a function from U to Y where $U \subsetneq X$ is the domain of f.

Developing a Dual Representation

Given an ipo-semilattice **A**, it is a partition of Boolean components by Theorem 1.

Each Boolean component is determined by its set of atoms.

The partial functions map between sets of atoms (opposite to homomorphisms).

A dual representation of sd-systems of Boolean algebras gives a much more compact way of drawing finite ipo-semilattices.

Peter Jipsen and Melissa Sugimoto

Every finite Boolean algebra \mathbb{B}_i is **isomorphic** to the powerset Boolean algebra of its finite set X_i of atoms.

For $i \leq j$, the **generalized BA homomorphism** h_{ji} corresponds to the **partial map** $f_{ij}: X_i \to X_j$ defined by

$$f_{ij}(a) = b \iff a \le h_{ji}(b)$$
 and $a \nleq h_{ji}(0_j)$.

A sd-system of proper partial maps is a triple $\mathbf{X} = (X_i, f_{ij}, I)$ such that

- I is a semilattice,
- $\{X_i : i \in I\}$ is a family of disjoint sets, and
- $f_{ij}: X_i \to X_j$ is a proper partial map for all $i \leq j \in I$ such that $f_{ii} = id_{X_i}$ and for all $i \leq j \leq k$, $f_{jk} \circ f_{ij} = f_{ik}$.

Peter Jipsen and Melissa Sugimoto

Lemma

In every ipo-semilattice $x, y \sqsubseteq z \implies 0_x \cdot 0_y = 0_{xy}$.

An sd-system of partial maps is **covering** if for all $i, j \le k$ with $i \cdot j = \ell$, dom $(f_{\ell,i}) \cup \text{dom}(f_{\ell,j}) = X_{\ell}$.

Corollary

Every sd-system of partial maps of an ipo-semilattice is covering.

Figure: A nonunital ipo-semilattice that has no unital completion

Peter Jipsen and Melissa Sugimoto

More Examples

The dual representations show clear differences even when the corresponding semilattice orders are visually similar.

Figure: A pair of fourteen-element ipo-semilattices with identity and their dual representations.

References

- Bonzio, S., Loi, A., Peruzzi, L.: A duality for involutive bisemilattices, Studia Logica, (2019) 107: 423–444.
- Jenei, S.: Group-representation for even and odd involutive commutative residuated chains. Studia Logica, 2022.
- P. Jipsen, O. Tuyt, D. Valota: Structural characterization of commutative idempotent involutive residuated lattices, Algebra Universalis, 82, 57, 2021.

W. McCune: Prover9 and Mace4. www.cs.unm.edu/~mccune/prover9/, 2005-2010.

D. Pigozzi. Partially ordered varieties and quasivarieties, 2004, http://orion.math.iastate.edu/dpigozzi/notes/santiago_ notes.pdf

THANKS!

Peter Jipsen and Melissa Sugimoto