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Introduction A functor from a filtral pretopos to compact Hausdorff locales Preservation properties

Marra - Reggio: The category of compact Hausdorff spaces is the
unique, up to equivalence, non-trivial, well-pointed, filtral pretopos
with set-indexed copowers of its terminal object.

Pretopos: Has finite limits, has disjoint and universal sums (typical
property of categories of spaces), has pullback-stable image
factorizations, every equivalence relation has a coequalizer and is
the kernel pair of it (typical property of algebraic categories).

Exactness of compact Hausdorff spaces follows from the fact that
they are monadic over Set for the monad induced by the Stone -
Čech compactification of a discrete space.

Compact Hausdorff locales are significant for developing
mathematics internally in a topos. Can we have a “pointless”
characterization for the category of compact Hausdorff locales?
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Čech compactification of a discrete space.

Compact Hausdorff locales are significant for developing
mathematics internally in a topos. Can we have a “pointless”
characterization for the category of compact Hausdorff locales?



Introduction A functor from a filtral pretopos to compact Hausdorff locales Preservation properties

Marra - Reggio: The category of compact Hausdorff spaces is the
unique, up to equivalence, non-trivial, well-pointed, filtral pretopos
with set-indexed copowers of its terminal object.

Pretopos: Has finite limits, has disjoint and universal sums (typical
property of categories of spaces), has pullback-stable image
factorizations, every equivalence relation has a coequalizer and is
the kernel pair of it (typical property of algebraic categories).

Exactness of compact Hausdorff spaces follows from the fact that
they are monadic over Set for the monad induced by the Stone -
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Hausdorff if its diagonal X → X × X is closed. Regular if every
u ∈ OX equals the supremum of those v ∈ OX that are well inside
it, i.e such that u ∧ v = 0 and ¬v ∨ u = 1.

Compact Hausdorff ⇔ compact regular (Johnstone, Vermeulen).
Their category CHLoc is a pretopos.

Finite limits, pb-stable image factorizations (CHLoc is regular):
C. Townsend’s PhD thesis (1998)

Every eq. rel. has a coequalizer and is the kernel pair of it: Implicit
in work of Vermeulen, JPAA 1994, (closed eq. rel. on compact
locales are effective). [KT], Cahiers 2021, completes the details.

Universal sums: Joyal - Tierney, disjoint sums [KT].
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Filtrality: Every object X has a cover S → X with
Sub(S)op = Idl(Sc), Sc lattice of complemented subobjects.

Examples: CHLoc (of course!), finite sets, any slice K/X of a
filtral pretopos K.

One can exploit filtrality in order to define a functor K → CHLoc.

Marra - Reggio: For an object X ∈ K in a filtral pretopos, Sub(X )
is a co-frame. Is Sub(X )op a compact regular frame?

In a regular category any S → X induces f [−] : Sub(S)→ Sub(X )
satisfying Frobenious reciprocity.

Sub(X )op is a closed quotient of the compact Hausdorff Sub(S)op.
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Is a closed quotient of a compact Hausdorff locale (compact)
Hausdorff?

Theorem
If f : Y → X is a closed surjection of locales and Y is compact
Hausdorff then X is compact Hausdorff.

Proof: Suffices to show it when Y is a Stone locale. These are
subfit, i.e every open sublocale of it is join of closed ones. They are
also normal. Hence X is also compact and normal. Suffices that X
is also subfit, because then X is regular, hence X is compact
Hausdorff. But

Closed quotients f : Y → X of subfit locales are subfit:
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An open sublocale U of X corresponds to a nucleus j = u → −
with inverse image f −j = f ∗u → − which is
f ∗u → − =

∧
i (vi ∨ −) in the frame of nuclei on OY .

Its direct image is f+f
−j = f+(

∧
i vi ∨ −) =

∧
i f+(vi ∨ −).

Each f+(vi ∨ −) is closed by the assumption of closedness of f .

In general j ≤ f+f
−j , but for j = u → − we have

f+f
−j = f∗(f ∗u → f ∗−) ≤ j = u → −.

If w ≤ f∗(f ∗u → f ∗v), then f ∗w ≤ f ∗u → f ∗v , equivalently
f ∗(w ∧ u) ≤ f ∗v , so we conclude that w ≤ u → v by the
surjectivity of f .
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We have defined a functor F = Sub(−)op : K → CHLoc

f : Y → X 7→ f −1 a f [−] : Sub(Y )op → Sub(X )op

K is well-pointed when K(1,−) : K → Set is faithful.

[MR] define K → CHaus via the topology induced by a closure
operator on pts(X ) = K(1,X ).

We can do much without need of points:

Theorem
For a filtral pretopos K, the functor F : K → CHLoc is full on
subobjects, faithful, preserves (regular) epis and equalizers.
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Preservation of equalizers (used also in showing that F is faithful):
For a pair of maps f , g : Y → Z in K with equalizer X → Y , the
equalizer of f [−], g [−] is given as
↓(
∧
{f −1[S ] ∨ g−1[∼S ] ∈ OX | S ≤ Z}) (Picado and Pultr,

restated in terms of the genuine order of subobjects and taking
into account that Sub(Z ) is a co-Heyting algebra.)

Sub(X )op is contained in the equalizer: X is below each
f −1[S ] ∧ g−1[∼S ]. For each S ≤ Z we have
X ∧ f −1[S ] = X ∧ g−1[S ] and then

X ∧ (f −1[S ] ∨ g−1[∼S ]) = (X ∧ f −1[S ]) ∨ (X ∧ g−1[∼S ])

= (X ∧ f −1[S ]) ∨ (X ∧ f −1[∼S ])

= X ∧ f −1[S∨ ∼S ]) = X ∧ Y = X
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Theorem
(Continued) Assume that the product S = S1 × S2 of two filtral
objects is filtral, the map B1

∐
B2 → B involving the respective

boolean algebras of complemented subobjects is injective. Then F
preserves binary products. Assume further that the unique map to
the terminal locale (which is compact Hausdorff) is a surjection,
then F preserves the terminal object, hence all finite products.

The extra assumption about products follows when K is
well-pointed.

[MR] notice that for well-pointed K, the slice K/X need not be
well-pointed.

Obviously, the slice K/X does not have the property when K has it.



Introduction A functor from a filtral pretopos to compact Hausdorff locales Preservation properties

Theorem
(Continued) Assume that the product S = S1 × S2 of two filtral
objects is filtral, the map B1

∐
B2 → B involving the respective

boolean algebras of complemented subobjects is injective. Then F
preserves binary products. Assume further that the unique map to
the terminal locale (which is compact Hausdorff) is a surjection,
then F preserves the terminal object, hence all finite products.

The extra assumption about products follows when K is
well-pointed.

[MR] notice that for well-pointed K, the slice K/X need not be
well-pointed.

Obviously, the slice K/X does not have the property when K has it.



Introduction A functor from a filtral pretopos to compact Hausdorff locales Preservation properties

Theorem
(Continued) Assume that the product S = S1 × S2 of two filtral
objects is filtral, the map B1

∐
B2 → B involving the respective

boolean algebras of complemented subobjects is injective. Then F
preserves binary products. Assume further that the unique map to
the terminal locale (which is compact Hausdorff) is a surjection,
then F preserves the terminal object, hence all finite products.

The extra assumption about products follows when K is
well-pointed.

[MR] notice that for well-pointed K, the slice K/X need not be
well-pointed.

Obviously, the slice K/X does not have the property when K has it.



Introduction A functor from a filtral pretopos to compact Hausdorff locales Preservation properties

Theorem
(Continued) Assume that the product S = S1 × S2 of two filtral
objects is filtral, the map B1

∐
B2 → B involving the respective

boolean algebras of complemented subobjects is injective. Then F
preserves binary products. Assume further that the unique map to
the terminal locale (which is compact Hausdorff) is a surjection,
then F preserves the terminal object, hence all finite products.

The extra assumption about products follows when K is
well-pointed.

[MR] notice that for well-pointed K, the slice K/X need not be
well-pointed.

Obviously, the slice K/X does not have the property when K has it.



Introduction A functor from a filtral pretopos to compact Hausdorff locales Preservation properties

The unique map Sub(1)op → 1 to the terminal locale is a
surjection: Positive rendition of [MR]’s assumption of non-triviality.

Sub(S1 × S2)op → Sub(S1)op × Sub(S2)op, Sub(1)op → 1
surjections: Along with preservation of equalizers, are ”flatness”
conditions for K → CHLoc.

They ensure that F : K → CHLoc preserves finite products.

But this can be seen in an elementary manner.
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Under the assumptions of filtrality and compatibility of filtral
objects with products we have gotten that F is exact, faithful, full
on subobjects.

When is it also covering (for every K ∈ CHLoc there is a cover
FX → K ), hence an equivalence?

Townsend’s Constructive Prime Ideal Theorem: For every
distributive lattice D, if a ∈ D has the property that for all lattice
homomorphisms f : D → Ω, f (a) = 0, then a = 0.

Equivalent to: Stone locales have enough points (and, CL, to PIT).

Assuming CL, PIT and copowers of 1 in K, the result of [MR] is
recovered.
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Assuming CPIT and copowers of 1 in K, is F also covering?

Do we have Sub(
∐

A 1) ≡
∏

A Ω in CHLoc? Or, for a Stone cover
S →

∐
ptsX 1, is Sub(S)op → β(ptsX ) surjective?

How rare are filtral pretoposes?

Can one expect to cover every pretopos by a filtral one using ideas
as in the topos of filters construction? (Though there the order of
filters is reversed.)

What conditions on a g.m. give that the notion of filtral pretopos
is stable under its inverse image?
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