Contex O Preliminaries

Modal Extentions

Conclusions and future works

イロン 不良 とくほう イロン しゅ

Twist-structures isomorphic to modal Nelson Lattices

Paula Menchón¹ and Ricardo O. Rodriguez²

¹Nicolaus Copernicus University in Toruń, Poland

²FCEyN - ICC CONICET - UBA

TACL2022, June 20-24, 2022. Coimbra, Portugal.

Context •	Preliminaries 000000	Modal Extentions	Conclusions and future works 00
		Context	

- We are interested in studying expansions of Nelson's constructive logic with strong Negation by means of unary modal operations using an algebraic approach.
- The algebraic counterpart of Nelson's constructive logic with strong Negation is the class of Nelson algebras.
- Nelson algebras and Nelson residuated lattices are term equivalent.
- It is very well known that every Nelson lattice (N3) can be generated from a Heyting algebra using a twist-construction.
- We will expand this construction for N3 with modal operators.

Preliminaries: Nelson lattices

Nelson lattices

A bounded integral commutative residuated lattice is a Nelson lattice $\mathbf{A}=\langle A,*,\rightarrow,\wedge,\vee,\perp,\top\rangle$ of type (2,2,2,2,0,0) such that

- $\langle A, *, \top \rangle$ is a commutative monoid.
- $\langle A, \wedge, \vee, \bot, \top \rangle$ is a bounded lattice.
- The following residuated property holds:

 $a * b \leq c$ iff $a \leq b \rightarrow c$.

- The negation $\neg a = a \rightarrow \bot$ is involutive, i.e. $a = \neg \neg a$.
- The following property holds:

$$((a^2 \to b) \land ((\neg b)^2 \to \neg a)) \to (a \to b) = \top.$$

Preliminaries: Twist construction

Let $\mathbf{H}=\langle H,\wedge,\vee,\rightarrow,\perp,\top\rangle$ be a Heyting algebra.

Definition

A filter F of ${\bf H}$ is said to be Boolean provided the quotient ${\bf H}/F$ is a Boolean algebra.

- It is well known and easy to check that a filter F of the Heyting algebra H is Boolean if and only if
 D(H) = {a ∈ H : ¬a = ⊥} ⊆ F. (dense elements of H)
- Boolean filters of H, ordered by inclusion, form a lattice, having the improper filter H as the greatest element and D(H) as the smallest element.

Preliminaries: Twist construction

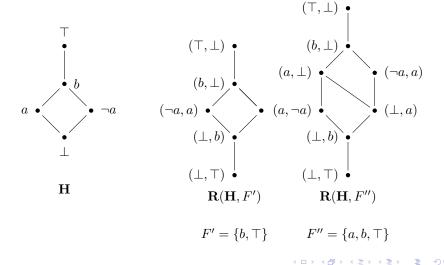
Theorem (Sendlewski + Busaniche&Cignoli)

Given a Heyting algebra ${\bf H}$ and a Boolean filter F of ${\bf H}$ let

$$R(\mathbf{H},F) := \{(x,y) \in H \times H : x \land y = \bot \text{ and } x \lor y \in F\}.$$

Then

Given a Nelson lattice A, there is a (unique up to isomorphisms) Heyting algebra H_A and a unique Boolean filter F_A of H_A such that A is isomorphic to R(H_A, F_A).



From Nelson lattices to Heyting algebras

On each Nelson lattice ${\bf A},$ we can define a congruence \equiv on ${\bf A}$ by

$$x \equiv y$$
 if and only if $x^2 = y^2$.

Let $H=\{a^2:a\in {\bf A}\}$ and operations $a\star^*b=(a\star b)^2$ for every binary operation $\star\in {\bf A}.$ Then

$$\mathbf{H}^* = (H, \vee^*, \wedge^*, \rightarrow^*, 0, 1)$$

is a Heyting algebra and $F = \{(a \lor \neg a)^2 : a \in A\}$ is a Boolean filter.

イロン 不同 とくほう イヨン しほう

From Nelson lattices to Heyting algebras

Theorem

Let N be a Nelson lattice. Then N is isomorphic to

$$R(\mathbf{H}^*,F):=\{(x,y)\in H\times H: x\wedge y=\bot \text{ and } x\vee y\in F\}$$
 where $F=\{(a\vee \neg a)^2:a\in N\}.$

 $i: N \to R(\mathbf{H}^*, F)$ $i(a) = (a^2, (\neg a)^2)$ ontext Preliminaries Modal Extentions Conclusions and future works

Modal N3-lattices

A modal N3-lattices is an algebra $\langle \mathbf{A}, \blacksquare, \blacklozenge \rangle$ such that the reduct \mathbf{A} is an N3-lattice and, for all $a, b \in A$, (1) $\blacklozenge a = \neg \blacksquare \neg a$, (2) if $a^2 = b^2$ then $(\blacksquare a)^2 = (\blacksquare b)^2$ and $(\blacklozenge a)^2 = (\blacklozenge b)^2$, (3) If $(a \land b)^2 = \bot$ then $(\blacksquare a \land \blacklozenge b)^2 = \bot$.

$$\begin{array}{ll} \square^* \colon H \to H & \diamondsuit^* \colon H \to H \\ \square^* a^2 := (\blacksquare a)^2 & \diamondsuit^* a^2 := (\blacklozenge a)^2 \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

イロト 不得 トイヨト イヨト 二日

Comparison with existing work

U. Rivieccio. Paraconsistent modal logics. Electronic Notes in Theoretical Computer Science, 278:173–186, 2011.

Rivieccio studied Modal N4-lattices and since Nelson algebras conform a subclass of N4-lattices, we can compare the results in the N3 context.

Nelson algebras = N4-lattices + $x \land \neg x \preceq y$

Comparison with existing work

Definition (Rivieccio)

A monotone modal N4-lattice is an algebra $\mathbf{B} = \langle B, \wedge, \vee, \Rightarrow, \neg, \blacksquare \rangle$ such that the reduct $\langle B, \wedge, \vee, \Rightarrow, \neg \rangle$ is an N4-lattice and, for all $a, b \in B$,

イロト 不得 トイヨト イヨト 二日

• if
$$a \preceq b$$
, then $\blacksquare a \preceq \blacksquare b$,

• if
$$\neg a \preceq \neg b$$
, then $\neg \blacksquare a \preceq \neg \blacksquare b$.

Comparison with existing work

In the N3 context, we have

Monotone modal N4-lattice

$$(x \land \neg x) \preceq y$$

N3-lattice

$$\begin{array}{c} a^2 \leq b \rightarrow (\blacksquare a)^2 \leq \blacksquare b \\ (\neg a)^2 \leq \neg b \rightarrow (\neg \blacksquare a)^2 \leq \neg \blacksquare b \end{array}$$

subclass of

Modal N3-lattices

イロト 不得 トイヨト イヨト

Modal Heyting algebras

A modal Heyting algebra MA is an algebra $\langle A, \Box, \diamond \rangle$ such that the reduct A is an Heyting algebra and

If $a \wedge b = \bot$ then $\Box a \wedge \diamondsuit b = \bot$.

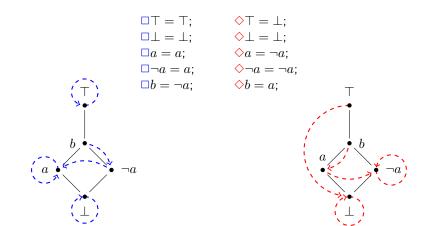
 $\mathbb{M}\mathbb{H}$ denotes the quasi-variety of modal Heyting algebras.

For example, an extension of this quasi-variety is the variety of *normal* modal Heyting algebras which is obtained by further considering

•
$$\neg \diamondsuit a = \Box \neg a$$
,
• $\Box(a \rightarrow b) \rightarrow (\Box a \rightarrow \Box b) = \top$ and
• $\Box \top = \top$.

Context		
0		

Modal Heyting example



Theorem

Let H be a modal Heyting algebra and let F be a Boolean filter such that

if
$$a \wedge b = \bot$$
 and $a \vee b \in F$ then $\Box a \vee \Diamond b \in F$.

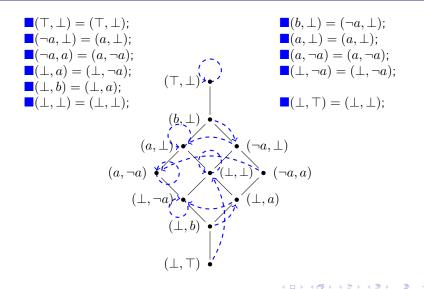
Then $\mathbf{R}(\mathbf{H}, F) = (R(\mathbf{H}, F), \land, \lor, *, \Rightarrow, \bot, \top, \blacksquare, \blacklozenge)$ is a Modal Nelson lattice, where the operators $\blacksquare, \blacklozenge$ are defined as follows:

$$\blacksquare(x,y) = (\Box x, \Diamond y), \qquad \qquad \blacklozenge(x,y) = (\Diamond x, \Box y).$$

$$i: N \to R(H^*, F)$$
$$i(\blacksquare a) = ((\blacksquare a)^2, (\neg \blacksquare a)^2)$$
$$= ((\blacksquare a)^2, (\blacklozenge \neg a)^2)$$
$$= (\square^* a^2, \diamondsuit^* (\neg a)^2)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Example



	Main results	

Lemma

Let N be a modal N3 lattice. Then $\mathbf{H}^* = (H, \vee^*, \wedge^*, \rightarrow^*, \neg^*, 0, 1, \square^*, \diamond^*) \text{ with } H = \{a^2 : a \in N\},$ $F = \{(a \vee \neg a)^2 : a \in N\} \text{ and modal operators}$

$$\Box^*a^2 = (\blacksquare a)^2$$
, $\diamondsuit^*a^2 = (\blacklozenge a)^2$,

is a modal Heyting algebra. In addition, if $a^2 \vee^* b^2 \in F$ and $a^2 \wedge^* b^2 = 0$ then $\Box^* a^2 \vee^* \diamond^* b^2 \in F$.

Theorem

Let N be a modal N3 lattice. Then N is isomorphic to

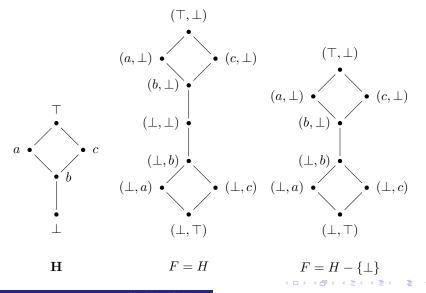
$$R(\mathbf{H}^*, F) := \{(x, y) \in H \times H : x \land y = \bot \text{ and } x \lor y \in F\}$$

where $F = \{(a \lor \neg a)^2 : a \in N\}.$

イロン 不同 とくほう イヨン しほう

Regular Nelson lattices

- A Nelson lattice is Regular if and only if the Heyting algebra \mathbf{H}^* satisfies the Stone identity $\neg x \lor \neg \neg x = 1$.
- $\mathcal{N}\mathcal{R}$ is a subvariety of the variety of Nelson residuated lattices generated by the connected rotations of generalized Heyting algebras.
- Let $A \in \mathcal{NR}$ be directly indecomposable. Then either $A \cong DR(A_{\mathbf{H}})$ or $A \cong CR(A_{\mathbf{H}})$. (disconnected or connected rotations of generalized H.A., respectively).



Menchón and Rodriguez

With negation fixed point:

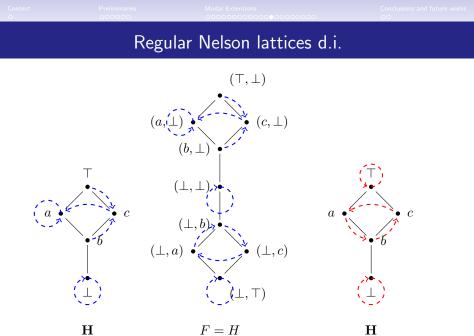
If there exist $x,y\in H$ such that $\Box x>\bot$ and $\Diamond y>\bot$ then the operators are defined:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

$$\blacksquare(x,y) = \begin{cases} \text{if } y = \bot & \text{then } (\Box x, \bot) \\ \text{if } x = \bot & \text{then } (\bot, \diamondsuit y) \end{cases}$$

$$\blacklozenge(x,y) \quad = \quad \begin{cases} \text{if } y = \bot & \text{then } (\diamondsuit x, \bot) \\ \text{if } x = \bot & \text{then } (\bot, \Box y) \end{cases}$$

 $\blacklozenge(\bot,\bot) = \blacksquare(\bot,\bot) = (\bot,\bot)$



F = H

< ロ > < 回 > < 回 > < 回 > < 回 >

э

 (c,\bot)

 (\perp, c)

 (\bot, \top)

a

c

э

H < - > < @ > < \ > < \ > <

Menchón and Rodriguez

 (\perp, b)

 $(a, \perp$

c

н

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Regular Nelson lattices d.i.

Without negation fixed point:

If there exist $x,y\in H$ such that $\Box x>\bot$ and $\Diamond x>\bot.$ The operators are defined:

$$\begin{split} \blacksquare(x,y) &= \begin{cases} \text{if } y = \bot & \text{then } (\Box x, \bot) \\ \text{if } x = \bot & \text{then } (\bot, \diamond y) \end{cases} \\ \blacklozenge(x,y) &= \begin{cases} \text{if } y = \bot & \text{then } (\diamond x, \bot) \\ \text{if } x = \bot & \text{then } (\bot, \Box y) \end{cases} \end{aligned}$$

If $x \in H$ such that $x > \bot$ then $\Box x > \bot$ and $\Diamond x > \bot$.

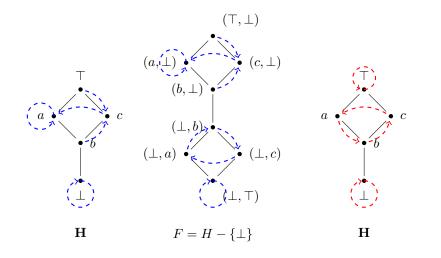
Modal Extentions

Conclusions and future works

イロン イロン イヨン イヨン

э

Regular Nelson lattices d.i.



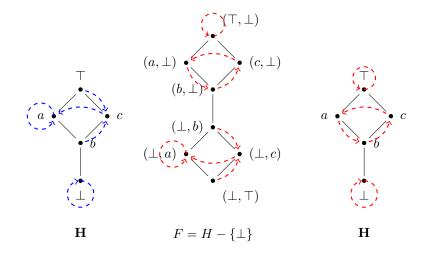
Context F			
	000000	000000000000000000000000000000000000000	00

Conclusions and future works

イロト イロト イヨト イヨト

э

Regular Nelson lattices d.i.



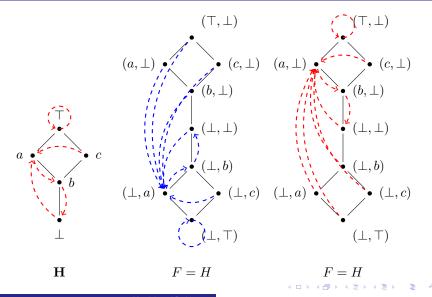
With negation fixed point: If $\Box[H] = \{\bot\}$, then the operators are defined: $\blacksquare(x,y) = (\bot, \diamondsuit y)$

$$\blacklozenge(x,y) = (\diamondsuit x,\bot)$$

In particular

 $\blacklozenge(\bot,\bot) \ = \ (\diamondsuit\bot,\bot) \quad \text{and} \quad \blacksquare(\bot,\bot) \ = \ (\bot,\diamondsuit\bot)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

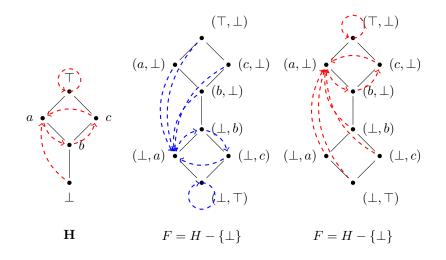


Without negation fixed point: If $\Box[H] = \{\bot\}$, then the operators are defined: $\blacksquare(x,y) = (\bot, \diamondsuit y)$

$$\blacklozenge(x,y) = (\diamondsuit x,\bot)$$

 $\Diamond x > \bot$ for all $x \in H$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●



イロト 不得 とくき とくき とうせい

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Conclusions and future works

- Our results generalize the existing conditions regarding modal operators on twist-structures in the N3-context.
- We want to provide a topological duality for these structures by means of Esakia spaces endowed with (non-monotonic) neighborhood functions.
- We plan to extend these results to Modal NM-algebras and modal Gödel algebras with additional axioms.

Preliminaries

Modal Extentions

Conclusions and future works

イロト イポト イヨト イヨト

Thank you for your attention

Menchón and Rodriguez