

The topological behaviour category of an algebraic theory

TACL 2022

Richard Garner Centre of Australian Category Theory Macquarie University

Algebraic theories in Mathematics

A signature is a set E of operations o, each with an arity 101 & Set

Example: signature Σ_{ar} for groups is $\{-, e, (-)^{-1}\}$ with arithes $\{2,0,1\}$

Given a signature Σ and set A, can define set $\Sigma(A)$ of terms with free vars from A.

Example: we have $(x \cdot y) \cdot z$, $(x^{-1})^{-1}$, $(y \cdot e^{-1})^{-1} \cdot z \in \Sigma_{qrp}(\{x,y,z\})$

An algebraic theory T is a signature Σ and a set E of equations s=t between terms in the same free vars.

Example: T_{arp} has equations like $(x \cdot y) \cdot z = x \cdot (y \cdot z)$, $x \cdot x^{-1} = e$,...

Algebraic theories in Mathematics

If C is a category with products and $T=(\Sigma,E)$ a theory, then a Σ -structure in C is an $X\in C$ +lw interpretations $[\sigma]: X^{|\sigma|} \longrightarrow X \qquad \text{for all } \sigma \in \Sigma.$

Given a Σ -structure in \mathcal{C} , can recursively define derived interpretations $\operatorname{It} J: X^A \longrightarrow X$ for all $\operatorname{te} \Sigma(A)$

and say X is a T-model if [s] = [t] for all s = t in E.

- Example: A Tap-model in Set is a group
 - · A Tap-model in Top is a topological good
 - · A Tap-model in Cocoalgk is a cocommutative Hopf algebra

If TT is an algebraic theory, and A is a set, then we write T(A) for the set of T-terms with free variables from A: this is the quotient of $\Sigma(A)$ by T-provable equality.

Each T(A) is a TI-model via substitution of terms; in fact, it's the free TI-model on the set A.

Example: Tap (A) is the free group with generalist set A

In computer stience, we see algebraic theories IT as encoding notions of computation, with T(A) being the set of all IT-programs returning values from the set A.

Example: Let I be a set. The theory TIn of input from the alphabet I has a single I-ary operation read, subject to no equations. We interpret elements of $T_{in}(A)$ as programs via

 $a \in A \subseteq T_{ln}(A)$ \iff return a read(\lambda i. \tau_i) \tag{let } i = read() in t(i)

For instance, when I=IN, the program which reads two numbers and returns their sum is given by

read (In. read (Im. n+m)) $\in T_{ln}(IN)$

Example: The theory TRI of reversible input from the alphabet I extends In with I new unary operations unread; and equations

unread; (read(dj. xj)) = xi $\forall i \in I$ read (di. unread; (x)) = x

We think of unread: (x) as pushing i back onto the input stream and then continuing as x.

For instance, when I=IN, the program which reads two numbers and puts their sum back on the input stream is given by

read (In. read (Im. unread nom (*)) $\in T_{RI}(\{x\})$.

```
Definition: A self-similar action of a monoid M on I is a function \delta: I \times M \longrightarrow M \times I (i,m) \longmapsto (m|i,i\cdot m) such that i\cdot l = i 1|i = 1 (i\cdot m)\cdot n = i\cdot (mn) mn|i = m|i n|i\cdot m
```

Idea: δ induces an action of M on I^{N} via $(...,i_{2},i_{1},i_{0}) \cdot m = (...,i_{2} \cdot (m|_{i_{0}})|_{i_{1}},i_{1} \cdot m|_{i_{0}},i_{0} \cdot m)$

```
Example: let M=IN and I=\{0,1\}. The adder action is:

(i,2n) \longmapsto (n,i)
(0,2n+1) \longmapsto (n,1) \text{ and, e.g., (···· o 1 1 0)·3 = (···· 1 0 0 1)}
(1,2n+1) \longmapsto (n+1,0)
```

Example: Let $\delta: I \times M \longrightarrow M \times I$ be a self-similar monoid action. The theory TI_{δ} of reversible input acted on by M via δ extends TI_{RI} with unary operations ($\alpha_{m}: me M$) and equations

$$\alpha_{n}(x) = x$$
 $\alpha_{m}(\alpha_{n}(x)) = \alpha_{mn}(x)$

$$\alpha_{m}(\text{read}(\text{hi. }x_{i})) = \text{read}(\text{hi. }\alpha_{m|i}(x_{m-i}))$$

The idea is that $d_m(x)$ acts on the input stream via $(-) \cdot m$ and then continues as x. For instance, when δ is as on last slide, the program which adds the font for bits of the stream to the rest is

read (λ_{i_0} . read (λ_{i_1} . read (λ_{i_2} . read (λ_{i_3} . $\alpha_{i_0+2i_1+4i_2+8i_3}(*)$) $\in \mathbb{T}_{\mathcal{S}}(\{*\})$

Example: Let B be a Booken algebra. The theory T_B of B-valued Boolean state has binary operations b for each be B and equations

Bergman $b(x,x)=x \quad b(b(x,y),z)=b(x,z) \quad b(x,b(y,z))=b(x,z)$

The idea is that B is a Boolean algebra of propositions about the external world, and that

I(x,y) = x b'(x,y) = b(y,x) b(c(x,y),y) = (b,c)(x,y)

b(x,y) > if b then a else y

In mathematics, we care about algebraic theories for their models. In computer science, we care more about free models... but also comodels! A comodel of an algebraic theory T is a model in Set. Thus, it involves:

- A set S
- · For each 6∈ ∑ a co-interpretation [[s]: S → |s|xS;
- ··· inducing derived co-interpretations [[E]]: $S \rightarrow A \times S$ for all $t \in \Sigma(A)$;
 ··· which we require to satisfy [[E]]=[[u]] for all t = u in E

In mathematics, comodels tend to be rather dull:

Example: A Tap-comodel S involves, among other things, a cointerpretation [e]: $S \longrightarrow p$, which forces S = p.

... but in computer science, comodels are much more interesting!

Example: A T_{ln} -comodel is a set S t/w a function [read]: S- $T \times S$. We view this as a state machine that answers requests for T-tohens:

- · S is a set of states;
- · [read] assigns to each state ses a next token ie I and a next state s'es.

Power-Shharavsha 2004

In general, if IT-terms are programs which interact with an environment, then IT-comodels are state machines providing instances of that environment.

In this view, the cointerpretation $[It]: S \rightarrow A \times S$ of $t \in T(A)$ assigns to each $s \in S$ the result of running the computation t from state s to get a return value $a \in A$ and a final state $s' \in S$.

```
Example: let S = \{a, b, c\} be the TI_{in}-comodel over the alphabet IN with:

[read]: a \longmapsto (7, b) \quad b \longmapsto (11, c) \quad c \longmapsto (9, b)

The co-interpretation [It]: S \rightarrow IN \times S of t = read(\lambda n. read(\lambda m. n+m)) \in T_{in}(N) is:

[It]: a \longmapsto (18, c) \quad b \longmapsto (20, b) \quad c \longmapsto (20, c)
```

Example: A T_{RI} -comodel is a set S t/w functions [read]: $S \rightarrow I \times S$ ([unread; $I: S \rightarrow S$); $\in I$... and the axioms say [read] is inverse to {[unread; I]; $\in I \times S \rightarrow S$.

So a comodel is a set S with an isomorphism $S \cong I \times S$.

Example: If $\delta: IxM \to MxI$ is a self-similar monoid action, then a T_S -comodel is a T_{RI} -comodel S with a right M-action S/t: $[read](s) = (i, s') \implies [read](s \cdot m) = (i \cdot m, s' \cdot m);$

Example: If B is a Bookan algebra, then a T_B -comodel is a set S that a function $S \times B \xrightarrow{V} 2$ s.t. each $v(s,-): B \to 2$ is a Bookan homomorphism.

Given a Tin-comodel

$$[read]: S \longrightarrow I \times S \qquad s \longmapsto (h(s), \delta(s))$$

each state $s \in S$ has an associated behaviour: the stream of values $\beta(s) := (h(s), h(\delta(s)), h(\delta^2(s)), h(\delta^3(s)), \dots)$

Abstractly, we find these behaviours as elements of the final comodel

$$[read]: I^{IN} \longrightarrow I \times I^{IN} \qquad (\underbrace{i_0, i_1, i_2, \dots}) \mapsto (i_0, \underbrace{(i_1, i_2, \dots)})$$

and recover $\beta(s)$ from s via the unique comodel map

$$\begin{array}{ccc}
S & \longrightarrow I \times S \\
\beta \downarrow & & \downarrow I \times \beta \\
I^{N} & \longrightarrow I \times I^{(N)}
\end{array}$$

In fact we can describe the final comodel for a general T!

Definition: Let T be an algebraic theory, $t \in T(T)$ and $u \in T(T)$. We write

(run t, throw away the return value, and then run u).

Definition: Let I be an algebraic theory. An admissible II-behaviour is is a natural family of functions

$$\beta_{\mathtt{I}} : \mathsf{T(I)} \longrightarrow \mathsf{I}$$

such that, for all teT(I) and $\vec{u} \in T(J)^{I}$, we have $\beta(t(\vec{u})) = \beta(t \gg u_{\beta(t)})$

Theorem (G.): Let
$$T$$
 be an algebraic theory. The final T -comodel F is the set of T -admissible behaviours, with cooperations $[\![\sigma]\!]: F \longrightarrow |\sigma| \times F$ $\beta \longmapsto (\beta(\sigma), \beta(\sigma), \beta(\sigma), \sigma)$

Example: an admissible behaviour of
$$T_{in}$$
 is uniquely specified by $\left(\beta\left(\text{read}\right), \beta\left(\text{read}\right), \beta\left(\text{read}\right)$

Example: The final T_{RC}-comodel is once again I^{IN}, with I read I given as before, and with

[unread;]: $I^{IN} \longrightarrow I^{IN}$ $(i_0, i_1, ...) \longmapsto (i, i_0, i_1, ...)$

Example: If S: IXM > MXI is a self-similar monoid action, then the final Ts-comodel is the final TRI-comodel augmented by the right M-action:

 $(i_0, i_1, i_2, \dots) \cdot m = (i_0 \cdot m, i_1 \cdot (m|_{i_0}), i_2 \cdot (m|_{i_0}|_{i_1}), \dots)$

Example: if B is a Bookean algebra, the final T_8 -comodel is VB = BAlg(B,2) with $V: VB \times B \longrightarrow 2$ V(9, b) = 9(b)

The behavious category

So we now understand the final comodel pretty well. What about an arbitrary comodel?

Theorem (G.): Let IT be an algebraic theory. The category of IT-comodels is a presheof category [IB, Set], where the behaviour category IB, has:

- · objects being admissible behaviours (ie ob 1B_T = F);
- $IB_{T}(\beta, \lambda) = \{m \in T(1) : \lambda = \beta(m(-))\} / \gamma_{\beta}$ where γ_{β} is smallest equiv. relation s.t. $t(\lambda i...m_{i}) \sim_{\beta} t \gg m_{\beta(i)}$

The behavious category

Example: the behaviour category By of TIn has:

•
$$IB(\vec{t},\vec{j}) = \{neIN : \partial^n \vec{t} = \vec{j}\}$$

 $E \cdot g \cdot \cdots 0 = 0 = 0$

Example: the behaviour category BRI of TRI has:

•
$$IB(\vec{t},\vec{j}) = \{k \in \mathbb{Z} : \partial^{N+k} \vec{t} = \partial^N \vec{j} \text{ for some } N \in \mathbb{N} \}$$

The behavious category

Example: for a self-similar action IXM > MXI, the behaviour category Bs has:

•
$$IB(\vec{r},\vec{j}) = \{ (r, m, s) \in IN \times M \times IN : \delta^s(\vec{j}) = \delta^s(\vec{r}) \cdot m \} /_{\sim}$$

where ~ generated by (r, m, s) ~ (r+1, m |; , s+1).

Example: for a Bookan algebra B, the behaviour category B_B is discrete on UB = BAlg(B,2).

Topologial comodels

A topological comoder of an algebraic theory IT is a model in Top .

Thus, it's a comodel S t/w a topology on S making each

[o]: S → |o|×S continuous. discrete topology

Idea: open sets in S encode computably observable sets of states.

Theorem (G.): Let Π be an algebraic theory. The final topological comodel is the final Π -comodel F under the topology ω / subbasis:

Topologial comodels

Example: In the cases of II_{in} , II_{RI} and II_{S} , the topology on the final topological comodel I^{IN} is the prodiscrete (= Baire) topology, with basic clopens $[i_0 \cdots i_n] = \{\vec{i} \in I^{IN} : \vec{i}_{0,\dots,n} = (i_0,\dots,i_n)\}$

Example: In the case of T_B for a Boolean algebra B, the topology on the final topological comodel UB is the Stone topology, with basic clopens $[b] = \{9: B \rightarrow 2 \mid 9(b) = 7\}$

The topological behaviour category

So we now understand the final topological comodel. What about an arbitrary topological comodel?

Theorem (G.): Let IT be an algebraic theory. The category of topological comodels is the category of left 1By-spaces, where 1By is the topological behaviour category with

- · Object-space the final topological comodel F;
- Arrow-space the topologisation of the arrows of the behaviour caty w/ subbasic open sets

 $[m, t \mapsto i] = \{m: \beta \longrightarrow \beta(mc) \mid \beta(t) = i\}$ for mET(1), teT(1), ieI

The topological behaviour category

In our examples, the topological behaviour categories give known objects from the world of non-commutative geometry:

- In the case of T_{RI} , we get the Cuntz topological groupoid, whose associated C*-algebra is the Cuntz C*-algebra and whose associated R-algebra is the Leavith algebra.
- In the case of T_S for $G \times I \xrightarrow{\delta} I \times G$ a self-similar group action, we get the Nekrashevych-Rover groupoid.
- · ... just the start of a bigger story!

The bigger Picture

An obvious question: which topological catys are behaviour catys? We can in fact over-answer this question. There's an adjunction finitery Alg Thy Tree C Top Cat) op morphisms are cofunctors where T_c extends $T_{clopen(C_o)}$ with unary ops m for each miles + axioms. This is a Galois (= idempotent) adjunction whose restriction to fixpoints is: Cart Closed Thy (2) (Ample Top Cat) P induces cart closed variety

Space of obs is Stone space This extends the non-commutative Stone duality of Kudiyavtseva & Lawson