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Introduction

What do I mean by geometry?

What do I mean by point-free geometry?

What is the objective of this talk?

What the mood of the presentation will be?

R. Gruszczyński Point-free geometry
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Basic notions

Let me focus on structures ⟨R,≤,O⟩ such that:

elements of R are called regions,

≤ ⊆ R2 is part of relation,

O ⊆ R and its elements are called ovals (point-free analogs of
certain convex sets).
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First axioms

⟨R,≤⟩ is a complete atomless Boolean lattice. (O0)

O is an algebraic closure system in ⟨R,≤⟩ containing 0. (O1)

O+ is dense in R+. (O2)
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Lines in the oval setting

Definition
By a line we understand a two element set L = {a, b} of disjoint
ovals, such that for any set of disjoint ovals {c, d} with a ⩽ c and
b ⩽ d it is the case that a = c and b = d:

X ∈ L
df
←→∃a,b∈O+

(
a ⊥ b ∧ X = {a, b} ∧

∀c,d∈O+(c ⊥ d ∧ a ⩽ c ∧ b ⩽ d −→ a = c ∧ b = d)
)
.

(dfL)

For a line L = {a, b} the elements of L will be called the sides of L .

R. Gruszczyński Point-free geometry
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Lines in the oval setting

Definition

Two lines L1 = {a, b} and L2 = {c, d} are paralell iff there is a side
of L1 which is disjoint from a side of L2:

L1 ∥ L2
df
←→ ∃a∈L1∃b∈L2 a ⊥ b . (df ∥)

In case L1 is not parallel to L2 we say that L1 and L2 intersect and
write ‘L1 ∦ L2’.

R. Gruszczyński Point-free geometry
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Half-planes in the oval setting

Definition

A region x is a half-plane iff x,− x ∈ O+:

x ∈ H
df
←→ {x,− x} ⊆ O+ . (dfH)
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Lines and half-planes in the oval setting

B1 B2

L1
a
b

L2
c
d

Figure: The structure �2.

Fact

B1 and B2 are the only half-planes of �2 and thus {B1,B2} is the
only line of �2 whose sides are half-planes. This line is parallel to
every other line. In general, in �n for n ⩾ 2 any pair {Bi ,Bj} with
i , j is a line parallel to every line in �n.
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Specific axioms

Definition

A finite partition of the universe 1 is a set {x1, . . . , xn} ⊆ R+ whose
elements are pairwise disjoint and such that

∨
{x1, . . . , xn} = 1.

For a partition P = {x1, . . . , xn} and x ∈ R+ by the partition of x
induced by P we understand the following set:

{x · xi | 1 ⩽ i ⩽ n ∧ x · xi , 0} .

The sides of a line form a partition of 1; equivalently: the
sides of a line are half-planes.

(O3)

R. Gruszczyński Point-free geometry
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Specific axioms

For any a, b , c ∈ O that are not aligned there is a line
which separates a from hull(b + c). (O4)

Definition

hull : R −→ R is the operation given by:

hull(x) B
∧
{a ∈ O | x ≤ a} . (df hull)

For x ∈ R the object hull(x) will be called the oval generated by x.

R. Gruszczyński Point-free geometry
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Specific axioms

If distinct lines L1 and L2 both cross an oval a, then they
split a in at least three parts.

(O5)

L2

L1
L3 L4

Figure: L1 and L2 split the oval into 3 parts, while L3 and L4 split it into 4
parts.
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Specific axioms

No half-plane is part of any stripe and any angle. (O6)

Thanks to (O6) we can prove, e.g., that parallelity of lines is a
Euclidean relation.

h1

h2 h

Figure: In Beltramy-Klein model: h is a part of the angle h2 · −h1.
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O-structures

Definition

A triple ⟨R,≤,O⟩ is an O-structure iff ⟨R,≤,O⟩ satisfies axioms
(O0)–(O6).

R. Gruszczyński Point-free geometry



23/51

Introduction
Oval structures

Basic geometrical notions
The representation theorem

First theorem

Theorem

Let O = ⟨R,⩽,O⟩ be an O-structure and O′ B ⟨R,⩽,O,H⟩ be the
structure obtained from O by defining H as the set of all ovals
whose complements are ovals. Then O′ satisfies all axioms for
Śniatycki’s geometry.

R. Gruszczyński Point-free geometry
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Now, towards the representation!
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Pseudopoints

Definition

A pseudopoint is any net (L1L2) that contains four non-zero
regions.

For any pseudopoint (L1L2), the lines L1 and L2 will be called its
determinants. In case we have two pseudopoints (L1L2) and
(L1L3) we say that they share a determinant L1.

R. Gruszczyński Point-free geometry
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Pseudopoints

h1 −h1

x = h1 · h2

y = −h1 · h2

h2 −h2

z = −h1 · −h2

u = h1 · −h2

x

u z

y
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Points

Definition

If L1, . . . , Lk ∈ L, an arbitrary element of the Cartesian product
L1 × . . . × Lk will be called an h-sequence. An h-sequence
⟨h1, . . . , hk ⟩ is non-zero iff h1 · . . . · hk , 0, otherwise it is zero.

Definition

Lines L1, L2 and L3 are tied iff L1 × L2 × L3 contains two different
zero and opposite h-sequences.

R. Gruszczyński Point-free geometry
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Points

0 = h1 · −h2 · −h3 = −h1 · h2 · h3

h3

−h3

x = h1 · h2 · h3

c = −h1 · −h2 · −h3

a = h1 · h2 · −h3

−h2

h2

h1

−h1

b = h1 · −h2 · h3

z = −h1 · h2 · −h3

y = −h1 · −h2 · h3
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Points

Definition

A pseudopoint (L1L2) lies on L3 iff L1, L2 and L3 are tied.
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Points

Definition

Psedopoints (L1L2) and (L3L4) are collocated (in symbols:
(L1L2) ∼ (L3L4)) iff (L1L2) lies on both L3 and L4.

Definition

Collocation of pseudopoints is an equivalence relation, therefore
points can be defined as its equivalence classes:

Π B π/∼ . (dfΠ)

R. Gruszczyński Point-free geometry
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Incidence relation

Definition

α ∈ Π is incident with a line L iff there is a pseudopoint (L1L2) ∈ α
such that (L1L2) lies on L .

h
−h

α

R. Gruszczyński Point-free geometry
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Betweenneess relation

Definition

α ∈ Π lies in the half-plane h iff there is (L1L2) ∈ α such that for
every x ∈ (L1L2), x · h , 0.

h
−h

α

R. Gruszczyński Point-free geometry
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Betweenness relation

Definition

A line L = {h,− h} lies between points α and β iff α lies in h and β
lies in − h.

h
−h

α

β

R. Gruszczyński Point-free geometry



35/51

Introduction
Oval structures

Basic geometrical notions
The representation theorem

Betweenness relation

Definition

Points α, β and γ are collinear iff some three pseudpoints from,
respectively, α, β and γ share a determinant L .

Definition

A point γ is between points α and β iff:

α, β and γ are collinear and
γ is incident with a line L which lies between α and β.

R. Gruszczyński Point-free geometry



36/51

Introduction
Oval structures

Basic geometrical notions
The representation theorem

Second theorem

Theorem

Let ⟨R,≤,O⟩ be an oval structure. Then individual notions of point
and line and relational notions of incidence and betweenness are
definable in such a way that the corresponding structure
⟨Π,L, ϵ,B⟩ satisfies all axioms of a second-order system of
geometry of betweenness and incidence.

Crucial fact: Aleksander Śniatycki’s theorem.

R. Gruszczyński Point-free geometry
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The objective

To find a representation of oval structures which in particular
means

to show that ovals are convex sets in a certain (point-based)
space.

R. Gruszczyński Point-free geometry
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Toolbox

At the disposal we have:

the standard basic incidence axioms,

the standard betweenness axioms, including: Pasch axiom,
Playfair axiom and the second-order continuity axiom.

R. Gruszczyński Point-free geometry
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Internal points of regions

Definition

α lies in an oval a (or is an internal point of a) iff there is a
pseudopoint (L1L2) ∈ α such that for every c ∈ (L1L2),
c · a , 0.

Irl(a) is the set of all internal points of a given oval a.

I will write (L1L2) ⋖ x and α ⋖ x meaning, respectively, that the
pseudopoint (L1L2) (the point α) is an internal pseudopoint
(point) of x.

R. Gruszczyński Point-free geometry
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Internal point of regions

Fact

If (L1L2) ⋖ x and (L1L2) ∼ (L3L4), then (L3L4) ⋖ x.

Theorem

There are no pseudopoint (L1L2) and no half-plane h such that
(L1L2) ⋖ h and (L1L2) ⋖ −h.

Idea of the proof.

Every net (L1L2L3) where the lines are pairwise distinct must
contain the zero region. In case there is a half-plane h such that
(L1L2) is an internal point of both h and its complement, then for
L = {h,−h}, the net (L1L2L) has eight non-zero regions,
a contradiction. □

R. Gruszczyński Point-free geometry
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Topology

∀a∈O+ Irl(a) , ∅ (1)

∀a,b∈O Irl(a · b) = Irl(a) ∩ Irl(b) . (2)

Fact

The set B B
{
Irl(a)

∣∣∣ a ∈ O+
}

is a basis.

Definition

Let ⟨Π,O⟩ be a topological space introduced via B.

R. Gruszczyński Point-free geometry
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Properties of the topology

Theorem

The space Π is a Urysohn space.

Theorem

For every region x, Irl(x) is a regular open subset of Π, so Π is
semi-regular.

Theorem

Irl : R→ RO(Π) is a bijection.

R. Gruszczyński Point-free geometry
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Ovals and convex sets

Definition

Γ ⊆ Π is convex iff for every α, β ∈ Γ, if γ is between α and β, then
γ ∈ Γ.

The idea is to prove that for every oval a, the set of its internal
points is convex in Π.

R. Gruszczyński Point-free geometry
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Ovals and convex sets

Lemma

Every oval is the infimum of the set of all half-planes of whose part
it is.

Lemma

For every half-plane h, Irl(h) is convex in Π.

Theorem

For every a ∈ O, Irl(a) is convex in Π.

Corollary

For every half-plane h, Irl(h) is a half-plane in Π, that is the
Boolean complement of Irl(h) in RO(Π) is convex.

R. Gruszczyński Point-free geometry
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The representation theorem

⟨R,≤,O⟩ ⟨Π,O⟩

⟨RO(Π),⊆,C⟩

Irl

Irl is a dense embedding.

R. Gruszczyński Point-free geometry
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An open problem

Theorem (Hypothesis)

For every convex open set C ⊆ Π there is an oval a such that
Irl(a) = C.

R. Gruszczyński Point-free geometry



49/51

Introduction
Oval structures

Basic geometrical notions
The representation theorem

Bibliography

Giangiacomo Gerla and Rafał Gruszczyński, Point-free geometry, ovals
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The End
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