Monotone-light factorizations and liftings

Rui Prezado joint work with Maria Manuel Clementino and Fernando Lucatelli Nunes

Universidade de Coimbra

20th May 2022

Let $\ensuremath{\mathcal{C}}$ be a category.

Definition (Factorization system)

Subclasses \mathcal{L}, \mathcal{R} of Mor(\mathcal{C}) such that any f can be uniquely factored as $f = r \circ I$, with $I \in \mathcal{L}$ and $r \in \mathcal{R}$.

 \mathcal{L}, \mathcal{R} must also be closed under composition and contain all isos.

- (iso, all) and (all, iso) on all categories,
- (surjections, injections) on Set,
- (regular epi, mono) on regular categories,
- (inverted by F, cartesian) on \mathcal{E} for a fibration $F \colon \mathcal{E} \to \mathcal{B}$

Monotone-light factorization in CHaus

Let $f: X \to Y$ be a continuous map.

Definition

- f is monotone if $f^{-1}(x)$ is connected for all x.
- f is light if $f^{-1}(x)$ is totally disconnected for all x.

Observe that

- Isomorphisms are monotone and light.
- Both properties are closed under composition.

Theorem [Eilenberg 31, Whyburn 50]

Every map f between compact Hausdorff spaces admits a unique factorization $r \circ I$ with r light and r monotone.

Monotone-light factorization in CHaus

 $\mathcal C$ category w/ pullbacks, $p \colon E \to B$ morphism.

p is of *effective descent* iff $p^* \colon C \downarrow B \to C \downarrow E$ is monadic.

Consider the fact. sys. $(\mathcal{L}, \mathcal{R})$ given by π_0 : CHaus \rightarrow Stn.

Theorem (Carboni, Janelidze, Kelly, Paré, 97)

Let $f: X \to B$ be a continuous map of compact Hausdorff spaces.

- f is monotone iff for all p, $p^*(f) \in \mathcal{L}$
- f is light iff there exists p eff.desc. s.t. $p^*(f) \in \mathcal{R}$.

Let A be an abelian group.

Recall ord $g = \#\langle g \rangle$. A is a *torsion* group if for all $g \in A$, ord g is finite, and A is *torsion-free* if the only torsion element is the unit.

Replacing totally disconnected \rightarrow torsion-free, connected \rightarrow torsion, we get an analogous result and proof for a ML factorization system in AbGrp.

Let \mathcal{P} be a property of maps of \mathcal{C} with pullbacks.

$$p^*(X) \longrightarrow X$$

$$p^*(f) \downarrow \qquad \qquad \downarrow^f$$

$$E \xrightarrow{p} B$$

Stabilization: $f \in \mathcal{P}_{stab}$ iff $p^*(f) \in \mathcal{P}$ for all p.

Localization: $f \in \mathcal{P}_{loc}$ iff $p^*(f) \in \mathcal{P}$ for some p of effective descent.

Let $(\mathcal{L},\mathcal{R})$ be a factorization system on $\mathcal C$ with pullbacks.

Definition (Monotone-light)

The monotone-light factorization system associated to $(\mathcal{L}, \mathcal{R})$ is $(\mathcal{L}_{stab}, \mathcal{R}_{loc})$ whenever this is a factorization system.

When is $(\mathcal{L}_{stab}, \mathcal{R}_{loc})$ a factorization system?

Problems:

- \mathcal{R}_{loc} might not be closed under composition!
- Factorization cannot always be guaranteed!

Positive results:

- If $\mathcal{L} = \mathcal{L}_{stab}$, then $\mathcal{R}_{loc} = \mathcal{R}$.
- $(\mathcal{L}_{stab}, \mathcal{R}_{loc})$ is a fact. sys. iff every morphism has a locally stable $(\mathcal{L}, \mathcal{R})$ -factorization.

Consider the fibration $\pi\colon \mathsf{Cat}\to\mathsf{Ord}$

Theorem (Xarez, 03)

The induced fact. sys. $(\mathcal{L}, \mathcal{R})$ has an associated ML fact. sys..

Likewise, consider $\pi_!$: Cat-Cat \rightarrow Ord-Cat.

Theorem (Xarez, 22)

The induced fact. sys. $(\mathcal{L}_1, \mathcal{R}_1)$ has an associated ML fact. sys..

Moreover, we can observe that $((\mathcal{L}_{stab})_!, (\mathcal{R}_{loc})_!) = ((\mathcal{L}_!)_{stab}, (\mathcal{R}_!)_{loc}).$

Lemma

Let \mathcal{V} be a monoidal category, and let $(\mathcal{L}, \mathcal{R})$ be a fact. sys. on the underlying category, and consider the following properties of \mathcal{V} -functors:

•
$$\mathcal{L}_! = \{ F \mid F \text{ bijective on objects and } F_{x,y} \in \mathcal{L} \},$$

•
$$\mathcal{R}_! = \{ F \mid F_{x,y} \in \mathcal{R} \}.$$

Then, for suitable \mathcal{L}, \mathcal{R} , this defines a fact. sys. on \mathcal{V} -Cat.

Consequently, if \mathcal{L} is stable then so is $\mathcal{L}_{!}$.

11/17

Semi-left exact reflection: $L \dashv R$ with R fully faithful, L fibration. Reflection w/ stable units: $L \dashv R$ with R fully faithful, $\eta_x \in \mathcal{L}_{stab}$ for all x.

Lemma

Consider $\mathcal{V} \mapsto \mathcal{V}$ -Cat.

This 2-functor maps semi-left exact reflections and reflections with stable unit (in a suitable sense) to the respective classical notion.

Moreover, if $L \dashv R$ is a suitable semi-left exact reflection, then the induced $(\mathcal{L}, \mathcal{R})$ is also suitable, and $(\mathcal{L}_1, \mathcal{R}_1)$ is the fact. sys. induced by L_1 .

The quantale of distribution functions is given by

$$\Delta = \left\{ f: [0,\infty] \to [0,1] \middle| f_X = \bigvee_{y < x} f_y \right\},\$$

with pointwise order and operation.

We have a (monoidal) fibration $\Delta \to [0,\infty],$ inducing a stable factorization system.

Assume $(\mathcal{L}, \mathcal{R})$ admits ML fact. sys.:

$$(\mathcal{L}, \mathcal{R}) \xrightarrow{(-)-\mathsf{Cat}} (\mathcal{L}_!, \mathcal{R}_!)$$
 \downarrow stab,loc
 $(\mathcal{L}_{\mathsf{stab}}, \mathcal{R}_{\mathsf{loc}}) \xrightarrow{(-)-\mathsf{Cat}} ((\mathcal{L}_{\mathsf{stab}})_!, (\mathcal{R}_{\mathsf{loc}})_!)$

Even though $(\mathcal{L}_{stab})_! = (\mathcal{L}_!)_{stab}$, only $(\mathcal{R}_!)_{\mathsf{loc}} \subseteq (\mathcal{R}_{\mathsf{loc}})_!$ is guaranteed.

Question: when do we have the reverse inclusion?

Let \mathbb{B} be a 2-category with the comma objects $\mathrm{id}_c \downarrow f$ for all $f \colon b \to c$.

This is enough to internalize fibrations and factorization systems.

A pseudofunctor $F \colon \mathbb{B} \to \mathbb{C}$ preserving the comma object will also preserve those notions.

MonCat and MonCat_{lax} both have these bilimits.

(–)-Cat: MonCat_{lax} \rightarrow CAT does not preserve them, but MonCat_{lax} \rightarrow CAT \downarrow Set does.

Thank you!