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What we will talk about

• Preliminaries on the structures involved;
• Baker-Beynon duality and a general approach to ’affine dualities’
• Our results
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Abelian `-groups and vector lattices

A general approach

Beyond Baker-Beynon duality
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`-groups and vector lattices

An `-group is an abelian group A equipped with a lattice order such that
a ≤ b implies a+ c ≤ b + c for every a, b, c ∈ A.

A vector lattice is an `-group V equipped with a structure of R-vector
space such that 0 ≤ r and 0 ≤ v imply rv ≥ 0 for each r ∈ R and v ∈ V .

`-groups and vector lattices form varieties.
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`-ideals

Congruences in `-groups and vector lattices correspond to `-ideals.

• An `-ideal in an `-group is a subgroup I that is convex, i.e. |a| ≤ |b|
and b ∈ I imply a ∈ I .

• An `-ideal in a vector lattice is a vector subspace that is convex.

• A proper `-ideal is called maximal if it is maximal wrt inclusion.
• A nontrivial `-group/vector lattice A is simple if {0} and A are the

only `-ideals of A.
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Archimedeanity

An `-group/vector lattice is semisimple if the intersection of all its maximal
`-ideals is {0}.

It is archimedean if na ≤ b for every n ∈ N implies a ≤ 0.

Semisimple ⇒ archimedean

Archimedean ⇒ semisimple (when it’s finitely generated)

• A/I is simple iff I is maximal.
• A/I is semisimple iff I is intersection of maximal `-ideals.
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Piecewise linear functions

A continuous function f : Rκ → R is piecewise linear if there exist
g1, . . . , gn linear homogeneous polynomials in the variables (xα)α<κ such
that for each x ∈ Rκ we have f (x) = gi (x) for some i = 1, . . . , n.
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Piecewise linear functions

• The set PWLR(Rκ) of piecewise linear functions on Rκ is a vector
lattice with pointwise operations.

• The set PWLZ(Rκ) of piecewise linear functions on Rκ such that
g1, . . . , gn have integer coefficients is an `-group with pointwise
operations.

Theorem (Baker 1968)
• PWLR(Rκ) is isomorphic to the free vector lattice on κ generators.
• PWLZ(Rκ) is isomorphic to the free `-group on κ generators.
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Piecewise linear functions

If X ⊆ Rκ, we denote by PWLR(X ) and PWLZ(X ) the sets of piecewise
linear maps restricted to X .

Theorem (Baker 1968)
• Every κ-generated semisimple vector lattice is isomorphic to

PWLR(C ) where C is a cone that is closed in Rκ.
• Every κ-generated semisimple `-group is isomorphic to PWLZ(C )

where C is a cone that is closed in Rκ.

A cone a subset of Rκ closed under multiplication by nonnegative scalars.
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Baker-Beynon duality

Theorem (Beynon 1974)
• The category of finitely generated archimedean vector lattices is

dually equivalent to the category of closed cones in Rn for n ∈ N and
piecewise linear maps with real coefficients.

• The category of finitely generated archimedean `-groups is dually
equivalent to the category of closed cones in Rn for n ∈ N and
piecewise linear maps with integer coefficients.
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Abelian `-groups and vector lattices

A general approach

Beyond Baker-Beynon duality
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Basic Galois connection
(Caramello, Marra, and Spada 2021)

Let V be the variety of `-groups or the variety of vector lattices. Let
A ∈ V , κ a cardinal, and Fκ be the free algebra in V over κ generators.

For any T ⊆ Fκ and S ⊆ Aκ, we define the following operators.

VA(T ) ={x ∈ Aκ | t(x) = 0 for all t ∈ T}
IA(S) ={t ∈ Fκ | t(x) = 0 for all x ∈ S}.

IA(S) is always an `-ideal.

Basic Galois connection

T ⊆ IA (S) iff S ⊆ VA (T )
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From a connection to a duality

The key tool: Algebraic Nullstellensatz
• Let I be an `-ideal of Fκ. We have I = IA(x) for some x ∈ Aκ iff

Fκ /I embeds into A.

• IA(S) =
⋂

x∈S IA(x).

Theorem
The Galois connection induces a dual equivalence between
• the category of algebras of V that are subdirect products of

subalgebras of A, and

• the category of subsets of type VA(I ) of Aκ where κ ranges over all
the cardinal numbers.
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Applying the general approach with A = R

Recall that an `-group embeds into R iff it is simple or trivial.
Moreover, every simple vector lattice is isomorphic to R.

Every semisimple `-group/vector lattice is subdirect product of
subalgebras of R.

The subsets of type VR(I ) of Rκ are the closed cones.

Fκ / IR(C ) ∼= PWLR(C ) (vector lattices)
Fκ / IR(C ) ∼= PWLZ(C ) (`-groups)

That is, Baker-Beynon duality.
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Theorem (Beynon 1974, revisited)
• The category of semisimple vector lattices is dually equivalent to the

category of closed cones in Rκ and piecewise linear maps with real
coefficients.

• The category of semisimple `-groups is dually equivalent to the
category of closed cones in Rκ and piecewise linear maps with
integer coefficients.
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Abelian `-groups and vector lattices

A general approach

Beyond Baker-Beynon duality
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How to replace R?
It is known that every `-group/vector lattice is subdirect product of linearly
ordered ones.

In particular,
A ↪→

∏
P

A/P

Such P ’s are prime ideals, that is x ∧ y ∈ P iff x ∈ P or y ∈ P .

Furthermore, A/I is linearly ordered iff I is prime and every `-ideal is
intersection of prime `-ideals.

Hence, recalling the Algebraic Nullstellensatz, we need an algebra that
embeds as many linearly ordered algebras as possible.

Of course, it won’t be possible to find an algebra that embeds all linearly
ordered ones. Hence, we impose a bound on the cardinality.
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How to get such an algebra
Given a cardinal α, F filter in P(I ) is α-regular iff there exists E ⊆ F of
cardinality |E | = α such that each i ∈ I belongs to only finitely many
e ∈ E .

If F is an α-regular ultrafilter of P(I ), the ultrapower
∏

F A is called
α-regular.

Any α-regular ultrapower is α+-universal: if |B|< α and G is
elementarly equivalent to A, then B ↪→

∏
F A.

Since any divisible ordered group is elementarly equivalent to R, one gets
that any ordered `-group G such that |G |< α embeds in any α-regular
ultrapower of R.

Theorem
Let γ be a cardinal. There exists an ultrapower U of R such that every
κ-generated linearly ordered `-group/vector lattice with κ ≤ γ embeds
into U .
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When A = U ...
If κ ≤ γ , then every κ-generated `-group/vector lattice is subdirect
product of totally ordered ones, that are subalgebras of U !

Theorem (Carai, L., and Spada)
Let γ be a cardinal. There exists an ultrapower U of R such that:
• The category of κ-generated vector lattices for some κ ≤ γ is dually

equivalent to the category of subsets of Uκ of type VU (I ) for some
κ ≤ γ .

• The category of κ-generated `-groups for some κ ≤ γ is dually
equivalent to the category of subsets of Uκ of type VU (I ) for some
κ ≤ γ .

Spoiler alert!

The subsets of Uκ of type VU (I ) are the closed set of a Zariski-like
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Two remarks:
• All of this can be done with a generic `-group that embeds all ordered

ones (up to a cardinality). With ultrapowers, IU (a)= prime `-ideal.
• If you add a strong unit everything works. Via Mundici’s equivalence,

you can work with the equivalent categories of MV-algebras and
Riesz MV-algebras, (that are varieties!) and A = [0, 1].

S. Lapenta (UNISA) Baker-Beynon duality beyond finite presentations 20/23



Two remarks:
• All of this can be done with a generic `-group that embeds all ordered

ones (up to a cardinality). With ultrapowers, IU (a)= prime `-ideal.

• If you add a strong unit everything works. Via Mundici’s equivalence,
you can work with the equivalent categories of MV-algebras and
Riesz MV-algebras, (that are varieties!) and A = [0, 1].

S. Lapenta (UNISA) Baker-Beynon duality beyond finite presentations 20/23



Two remarks:
• All of this can be done with a generic `-group that embeds all ordered

ones (up to a cardinality). With ultrapowers, IU (a)= prime `-ideal.
• If you add a strong unit everything works.

Via Mundici’s equivalence,
you can work with the equivalent categories of MV-algebras and
Riesz MV-algebras, (that are varieties!) and A = [0, 1].

S. Lapenta (UNISA) Baker-Beynon duality beyond finite presentations 20/23



Two remarks:
• All of this can be done with a generic `-group that embeds all ordered

ones (up to a cardinality). With ultrapowers, IU (a)= prime `-ideal.
• If you add a strong unit everything works. Via Mundici’s equivalence,

you can work with the equivalent categories of MV-algebras and
Riesz MV-algebras, (that are varieties!) and A = [0, 1].

S. Lapenta (UNISA) Baker-Beynon duality beyond finite presentations 20/23



A more concrete view on the duality
Every piecewise linear function f : R→ R can be extended to a function
∗f : U → U by setting ∗f ([(ri )i∈I ]) = [(f (ri ))i∈I ].

Similarly, we can extend every piecewise linear f : Rκ → R to
∗f : Uκ → U which is called the enlargement of f .
We define:

∗PWLR(Uκ) = {∗f | f ∈ PWLR(Rκ)}, ∗PWLZ(Uκ) = {∗f | f ∈ PWLZ(Rκ)}.

If X ⊆ Uκ, we can consider ∗PWLR(X ) and ∗PWLZ(X ).

C ⊆ Uκ 7→ Fκ / IU (C ) Fκ /J 7→ VU (J)

When C = VU (J) for some J ,
• Fκ / IU (C ) ∼= ∗PWLR(C ) (vector lattices).
• Fκ / IU (C ) ∼= ∗PWLZ(C ) (`-groups).
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Correspondence between `-ideals and closed subsets

Fκ Rκ Uκ

maximal `-ideals half-lines VU IU-closure of standard points
from the origin (except the origin)

= half-lines from the origin
through a standard point

intersections of closed cones VU IU-closure of standard subsets
maximal `-ideals
prime `-ideals VU IU-closure of points
`-ideals VU IU-closed subsets
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Thank you!
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