
Advantages and challenges posed by PNmatrices

PNmatrix = Partial non-deterministic matrix

B = 〈{0, 1}, {1}, ·B〉
→B 0 1
0 1 1
1 0 1

impose p→(¬p→¬q)

−−−−−−−−−−−−−−−−→

BAx = 〈{00, 01, 10, 11}, {10, 11}, ·BAx
〉

→BAx
00 01 10 11

00 10 10 10 ∅
01 10 10, 11 10 11
10 00, 01 00, 01 10 ∅
11 ∅ 01 ∅ 11

¬BAx

00 00, 01
01 10, 11
10 00, 01
11 11
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Plan

Logics and their combination

– Tarskian consequence relations: single-conclusion set× fmla

– Scottian consequence relations: multiple-conclusion set× set

– Posetal categories Mult and Sing

– Motivation for PNmatrices: modular semantics for combined logics

Semantics: Generalized truth-functionality

– Bivaluations and categories Biv and Biv∩ (isomorphic to Multop and Singop)

– Semantical units: from matrices to PNmatrices

– Categories PNmatr and SPNmatr and their posetal quotients Rexp and
SRexp

– Galois connection between Rexp and SRexp and Multop and Singop

Strict morphisms and quotients of PNmatrices, what is new?
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Basic concepts

signatures Σ: N0-indexed set of connectives
Σ1 ∩ Σ2 = {Σ(n)

1 ∩ Σ2
(n)}n∈N0

Σ1 ∪ Σ2 = {Σ(n)
1 ∪ Σ2

(n)}n∈N0

Σ1 \ Σ2 = {Σ(n)
1 \ Σ2

(n)}n∈N0

Propositional languages L = LΣ(P ) given by ψ ::= P | ©(ψ, . . . , ψ)
for © ∈ Σ

substitutions σ : P → L, ϕ(~ψ) = ϕ(~p)σ when σ(~p) = ~ψ

single-conclusion rules
Γ

ϕ
with Γ, {ϕ} ⊆ L

set× fmla

multiple-conclusion rules
Γ

∆
with Γ,∆ ⊆ L

set× set
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Notion of logic

Multiple-conclusion consequence relation
as proposed by Scott and Shoesmith&Smiley in the 70’s
Internalizes case analysis

Reasoning = From certain premise-set one reaches a conclusion-set
Language (L) = Set of formulas (ϕ,ψ, δ, γ, η, ξ, . . .)

Γ = premise-set ∆ = conclusion-set

We write Γ B ∆ to say:
from Γ we conclude ∆ or

∆ is a consequence of Γ or
∆ follows from Γ
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Single- and multiple-conclusion logics

A Scottian consequence relation (set× set-cr) is a B⊆ ℘(L)× ℘(L) satisfying:

(O) Γ B ∆ if Γ ∩∆ 6= ∅ (overlap)

(D) Γ ∪ Γ′ B ∆ ∪∆′ if Γ B ∆ (dilution)

(C) Γ B ∆ if Γ ∪ Ω B Ω ∪∆′ for every partition 〈Ω,Ω〉 of some Θ ⊆ L (cut for sets)

(S) Γσ B ∆σ for any substitution σ : P → L if Γ B ∆ (substitution invariance)

Given a set× set-cr B, its single conclusion fragment `B=B ∩(℘(L)× L)

is a Tarskian consequence relation (set× set-cr) satisfying:

(R) Γ ` ϕ if ϕ ∈ Γ (reflexivity),

(M) Γ ∪ Γ′ ` ϕ if Γ ` ϕ (monotonicity),

(T) Γ ` ϕ if ∆ ` ϕ and Γ ` ψ for every ψ ∈ ∆ (transitivity)

(S) Γσ ` ϕσ for any substitution σ : P → L if Γ ` ϕ (substitution invariance)

• A set of set× set-rules R is a basis for BR, the smallest set× set-cr containing R.
• A set of set× fmla-rules R is a basis for `R, the smallest set× fmla-cr containing R.
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Categories Sing and Mult

Let Mult and Sing be the posetal categories where the objects are consequence
relations of the correspondent type and are ordered by inclusion:
Mult Objects: 〈Σ,B〉 where B is a set× set-cr

Morphisms: 〈Σ1,B1〉 v 〈Σ2,B2〉 if Σ1 ⊆ Σ2 and B1⊆B2

Sing Objects: 〈Σ,`〉 where ` is a set× fmla-cr
Morphisms: 〈Σ1,`1〉 v 〈Σ2,`2〉 if Σ1 ⊆ Σ2 and `1⊆`2

Facts:

• Both are complete lattices.

• Sing is embeddable in Mult by sending 〈Σ,`〉 to 〈Σ,B`〉
where B` is the smallest set× set-cr such that `⊆B.

That is,
Γ B` ∆ iff there is δ ∈ ∆ such that Γ ` δ

• Sing is a full subcategory of Mult

• For ∝∈ {B,`}

type(∝) =

{
set× set if ∝=B

set× fmla if ∝=`
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Two standard ways of presenting a logic

Let L be a language, Γ,∆ ⊆ L and ϕ ∈ L

• Via semantics
givenM set of models as bivaluations m : L→ {true, false}

– Multiple-conclusion (set× set)
Γ BM ∆ := If for every m ∈M, m(Γ) = {true} then true ∈ m(∆)

– Single-conclusion (set× set)
Γ `M ϕ := If for every m ∈M, m(Γ) = {true} then m(ϕ) = true

Dual reading: Premise-set (conjuntive) and conclusion-set (disjunctive).

• Via deductive systems

– Multiple-conclusion (set× set)
Given set of R ⊆ ℘(L)× ℘(L) of set× set-rules
Γ BR ϕ if there is a proof of ∆ from Γ

R axiomatizes B

– Single-conclusion (set× set)
Given set of R ⊆ ℘(L)× L of set× set-rules
Γ `R ϕ if there is a proof of ϕ from Γ using the rules in R

R axiomatizes `

Axiomatizations as basis for the corresponding notion of logic
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Multiple-conclusion calculi and tree-proofs

A calculus is a set of rules (schema) R ⊆ ℘(L)× ℘(L).
Proofs can be arboreal as rules with a conclusion set with more than a formula

impose branching (case split).
Rules with empty conclusion set discontinues the branches where there are applied.

We write Γ BR ∆ if there is a proof starting with Γ and having a formula of ∆ in each non-
discontinued branch.

Γ BR A2, A7, A8

Γ

A5

A9

A10

A12

A13

A8

A11

∗

A8A6

A7

A0

A3

A4

∗

A1

A2

Γ BR A4

Γ

A0

A1

A2

A3

A4

Γ BR {Ai : i ∈ N}
Γ

B0

B1

Bn

∗

An+1

A2

A1

A0

BR is the smallest set× set-cr containing R,
R is a proper basis for BR

If R are all set× fmla then BR=B`R .
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Combining logics by joining their calculi: fibring

Being complete lattices both Mult and Sing have joins and meets.
Given two logics 〈Σ1,∝1〉 and 〈Σ2,∝2〉 of the same type, either set× set or set× fmla,
(either both in Mult or both in Sing)
Their join is

〈Σ1,∝1〉 t 〈Σ2,∝2〉 = 〈Σ1 ∪ Σ2,∝1 • ∝2〉
where∝1 • ∝2 is the smallest cr of the same type over LΣ1∪Σ2(P ) containing∝1 and∝2.
Their meet is simply

〈Σ1,∝1〉 u 〈Σ2,∝2〉 = 〈Σ1 ∩ Σ2,∝1 ∩ ∝2〉
Facts:
Given two sets of rules of the appropriate type R1 and R2 we have that

∝R1 • ∝R2=∝R1∪R2
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Examples of combining logics by joining their calculi

• Language extensions
Adding new connectives to a logic without imposing anything about them
Given B and ` over Σ0 ⊆ Σ let BΣ and `Σ over Σ

Γ BΣ ∆ iff
Γ0 B ∆0 for some Γ0 ⊆ LΣ0(P ), ∆0 ⊆ LΣ0(P ), σ : P → LΣ(P ) with Γσ0 ⊆ Γ, ∆σ

0 ⊆ ∆

• Fusion of modal logics
Seminal example and well understood via gluing Kripke frames for each of the com-
bined logic.

• Combining classical AND and OR
Let R∧∨ be formed by the set× set-rules

p∧ q
p

p∧ q
q

p
p∨q

p∨p
p

p∧ q
q

p q
p∧ q

p∨q
q∨p

p∨(q∨r)
(p∨r)∨q

Can we combine the semantics of the ∧ and ∨ fragments of Boolean classical matrix
into a semantics for `R∧∨?
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Semantics of bivaluations

Susko thesis (1977), models are bivaluations 0 = true and 1 = false

Bival(L) = {b : L→ {0, 1}}

Given B ⊆ Bival(L) closed for substitutions let

Γ BB ∆ if and only if there is no b ∈ B such that b(Γ) ⊆ {1} and b(∆) ⊆ {0}.

– BB is a set× set-cr

– `B=`BB
is a set× set-fmla

Ultimately, the various kinds of semantics (matrices, Kripke/neighborhood frames, rela-

tional/topological structures) are just clever ways of presenting bivaluations exploring

the algebraic structure of the language.
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Bivaluations in set× set and set× fmla

Given {bi : i ∈ I} ⊆ B their intersection is⋂
i∈I

{bi : i ∈ I} = b

where b(A) = 1 iff bi(A) = 1 for every i ∈ I.

Let B∩ denote the closure for intersections of bivaluations in B.

Facts: BB1=BB2 iff B1 = B2 and `B1=`B2 iff B∩1 = B∩2

Given Σ0 ⊆ Σ and B ⊆ Bival(LΣ0(P )), let BΣ = {b ◦ skelΣ0 : b ∈ B} is closed for
substitutions.

Facts: BBΣ=BΣ
B and `BΣ=`Σ

B

skelΣ0 is a bijection between LΣ0(P ) and LΣ(P ) capturing the view of an arbi-
trary LΣ(P ) formula from the point of view of Σ0 The idea is simply to replace
Σ\Σ0-headed formulas by dedicated variables, just renaming the original vari-
ables.
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Posetal categories Biv and Biv∩

For B ⊆ Bival(LΣ(P )) closed for substitutions let
Mult(B) = 〈Σ,BB〉 and Sing(B) = 〈Σ,`B〉.

Biv:
Objects: 〈Σ,B〉 with B ⊆ Bival(LΣ(P )) closed for substitutions
Morphisms: 〈Σ1,B1〉 v 〈Σ2,B2〉 iff Σ2 ⊆ Σ1 and B1 ⊆ BΣ1

2 .
Biv∩:
Objects: 〈Σ,B〉 with B ⊆ Bival(LΣ(P )) closed for substitutions and intersections
Morphisms: 〈Σ1,B1〉 v 〈Σ2,B2〉 iff Σ2 ⊆ Σ1 and B1 ⊆ BΣ1

2 .
Facts

• Mult : Biv→Mult is a dual order isomorphism, that is:

Mult is bijective, and 〈Σ,B〉 v 〈Σ0,B0〉 iff 〈Σ0,BB0〉 v 〈Σ,BB〉.

• Sing : Biv∩ → Sing is a dual order isomorphism, that is:

Sing is bijective, and 〈Σ,B〉 v 〈Σ0,B0〉 iff 〈Σ0,`B0〉 v 〈Σ,`B〉.
• 〈Σ,B1〉 t 〈Σ,B2〉 = 〈Σ,B〉 where B is the closure for substitutions of B1 ∪ B2

• 〈Σ,B1〉 u 〈Σ,B2〉 = 〈Σ,B1 ∩ B2〉

• Funct(〈Σ,B1〉 t 〈Σ,B2〉) = Funct(〈Σ,B1〉) u Funct(〈Σ,B2〉) for Funct ∈ {Mult, Sing}

• Funct(〈Σ,B1〉 u 〈Σ,B2〉) = Funct(〈Σ,B1〉) t Funct(〈Σ,B2〉) for Funct ∈ {Mult, Sing}
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Basic examples

The smallest logic in Σ

Let Γ BBival(LΣ(P )) ∆ iff Γ ∩∆ 6= ∅

The largest logic in Σ

Γ Bemptyset ∆ holds for every Γ,∆ ⊆ LΣ(P )

The most common general way of defining sets of bivaluations closed by sub-
stitutions is by considering logical matrices.
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Logics induced by logical matrices

Given signature Σ = {Σ}n∈N and fixed L = LΣ(P )

Logical matrix M = 〈V, ·M,D〉
where 〈V, ·M〉 is an algebra of truth-values

set endowed with operations ©M : V n → V for © ∈ Σ(n)

D ⊆ V is the set of designated elements corresponding to 1

Valuations over M are v : L→ V satisfying
v(©(ϕ1, . . . , ϕk)) = ©M(v(ϕ1), . . . , v(ϕk))

Given valuation v and substitution σ, v ◦ σ is also a valuation. Where v ◦ σ(ϕ) = v(ϕσ)

Each valuation induces a bivaluation

bv(ϕ) =

{
1 if v(ϕ) ∈ D

0 if v(ϕ) /∈ D

The set BVal(M) = BM = {bv : v valuation over M} is closed under substitutions, since
bv ◦ σ = bv◦σ

Let BM=BBM and `M=`BM=`BM .
Γ BM ∆ iff there is no valuation v over M such that v(Γ) ⊆ D and v(ϕ) ⊆ V \D.
Or equivalently, for every v over M, v(Γ) ⊆ D implies v(∆) ∩D 6= ∅.

There is no finite matrix M such that BM=BBival(LΣ(P )) nor `M=`emptyset!
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Extending truth-functionality: non-determinism and partiality

A Σ-matrix is a tuple M = 〈V, ·M, D〉

– V is a non-empty set (of truth-values)

– D ⊆ V (the set of designated truth-vales)

– ©M : V n → V for each c ∈ Σ(n)

Other ways of defining sets of bivaluations closed for substitution:
non-determinism A Σ-Nmatrix is . . . with ©M : V n → ℘(V ) \ {∅}

from Avron & Lev 2005
‘Non-deterministic multiple-valued structures’, JAR 2013

partiality A Σ-Pmatrix is . . . with ©M : V n → {{a} : a ∈ V } ∪ {∅}

both A Σ-PNmatrix is . . . with ©M : V n → ℘V
from Baaz, Lahav & Zamansky’s
‘Finite-valued semantics for canonical labelled calculi’, JAR 2013

Valuations over M are v : L→ V satisfying
v(©(ϕ1, . . . , ϕk)) ∈ ©M(v(ϕ1), . . . , v(ϕk))

The set BVal(M) = BM = {bv : v valuation over M} is closed under substitutions, since
bv ◦ σ = bv◦σ and we let also BM=BBM and `M=`BM=`BM
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PNmatrices are nice!

• Almost(!) every logic can be characterized by a single PNmatrix
enough for signature to contain a connective of arity > 1

• PNmatrices retain many nice properties of matrices
when finite: logic is finitary, SAT in NP, decision in coNP

• Many non-finitely valued logics have finite PNsemantics

• Natural semantics for logical strengthenings and combined logics

• Finite PNmatrices still can be axiomatized by analytical set× set-calculi
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Some 2-valued Nmatrices you should know

Mfree

©free 0 1

0 0, 1 0, 1
1 0, 1 0, 1

BMfree is axiomatized by the emptyset of rules

Mmp

→mp 0 1

0 0, 1 0, 1
1 0 0, 1

BMmp is axiomatized by modus ponens p , p→q
q

Msq
0 1

Msq 0, 1 1
BMsq is axiomatized by �-generalization p

�p

None of the logics induced by the Nmatrices above is induced by a finite matrix (or
even by a finite set of finite matrices.

• 22n
n-ary Boolean functions and

• 32n
n-ary Boolean multi-functions (81 binary Boolean multi-functions, 16 of them

are Boolean functions)

• Hence, 65 that are not functions

• Every set of Boolean multi-functions generates a different logic that can automat-
ically be provided with an analytic axiomatization

TACL2022@Coimbra 18



Language extensions and non-determinism

Adding new connectives to a logic without imposing anything on them

Given Σ0-PNmatrix M = 〈V, ·M, D〉 let MΣ = 〈V, ·MΣ, D〉 with

©(a1, . . . , ak) =

{
©M(a1, . . . , ak) if © ∈ Σ0

V otherwise

Facts:

• BVal(MΣ) = BVal(M)Σ

• BMΣ=BΣ
M and `MΣ=`Σ

M

• If general, if Σ \ Σ0 contains a 0-ary connective then there is no single
matrix characterizing BΣ or `Σ

• If general, if Σ \ Σ0 contains a n-ary connective with n > 0 then there is
no finite set of finite matrices characterizing BΣ or `Σ
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More examples

Matrix: MDB = 〈{f,⊥,>, t}, ·MDB , {>, t}〉
Dunn-Belnap logic, dealing with partial information about atomic formulas

¬MDB(x)
f t
⊥ ⊥
> >
t f

∧MDB f ⊥ > t
f f f f f
⊥ f ⊥ f ⊥
> f f > >
t f ⊥ > t

∨MDB f ⊥ > t
f f ⊥ > t
⊥ ⊥ ⊥ t t
> > t > t
t t t t t

Nmatrix: MP = 〈{f,⊥,>, t}, ·MP , {>, t}〉
Processors logic dealing with partial information about complex formulas decidable in PTIME

¬MP(x)
f t
⊥ ⊥
> >
t f

∧MP f ⊥ > t
f f f f f
⊥ f f,⊥ f f,⊥
> f f > >
t f f,⊥ > >, t

∨MP f ⊥ > t
f f,> ⊥, t > t
⊥ ⊥, t ⊥, t t t
> > t > t
t t t t t

Pmatrix: MK = 〈{0, a, b, 1}, ·MK , {b, 1}〉
Kleene of order, two matrices put together

¬MK(x)
0 1
a a
b b
1 0

∧MK 0 a b 1
0 0 0 0 0
a 0 a ∅ a
b 0 ∅ b b
1 0 a b 1

∨MK 0 a b 1
0 0 a b 1
a a a ∅ 1
b b ∅ b 1
1 1 1 1 1

TACL2022@Coimbra 20



Categories of PNmatrices PNmatr and Rexp

A function f : V1 → V2 is a strict morphism between
M1 = 〈Σ1, ·M, D1〉 and M2 = 〈Σ2, ·M, D2〉 if Σ2 ⊆ Σ1 and satisfies f−1(D2) = D1 and
for © ∈ Σn

2 ,
f(©M1(x1, . . . , xn)) ⊆ ©M2(f(x1), . . . , f(xn))

PNmatr:
Objects: 〈Σ,M〉 with M a PNmatrix over Σ

Morphisms: strict morphisms between PNmatrices
Rexp: Avron called pre-images by strict homomorphisms rexpansions

Objects: 〈Σ,M〉 with M a PNmatrix over Σ

Morphisms: 〈Σ1,M1〉 v 〈Σ2,M2〉 iff Σ2 ⊆ Σ1 and there is some strict morphism
between M1 and M2. Equivalently, if M1 is a rexpansion of M2.

Facts:

• Rexp is a posetal category

• Rexp is the result quotientating the hom sets in PNmatr into a single element

• The quotient functor Q : PNmatr→ Rexp is continuous and cocontinuous

• Q transforms products in meets and coproducts in joins
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Saturation and the ω-power

We say a PNmatrix M is saturated whenever BM=B`M , that is, whenever for ev-
ery Γ BM ∆ iff there is δ ∈ ∆ such that Γ `M δ.

Let SPNmatr and SRexp the full subcategories of PNmatr and Rexp where
the objects are restricted to saturated PNmatrices.

Let Mω = 〈V ω, ·ω, Dω〉 with

©ω(s1, . . . , sk) = {s ∈ V ω : s(i) ∈ ©M(s1(i), . . . , sk(i))}

Facts:

• 〈Σ,M〉 is saturated if and only if BVal(M)∩ = {1} ∪ BVal(M)

• `M = `Mω

• BMω = B`M

• The Boolean Nmatrices shown before are all saturated
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Strict product of PNmatrices

Given Σ1- and Σ2-PNmatrices M1 = 〈A1, ·1, D1〉 and M2 = 〈A2, ·2, D2〉,
let U1 = A1 \D1 and U2 = A2 \D2.

Their strict product is the Σ1 ∪ Σ2-PNmatrix

M1 ?M2 = 〈A12, ·12, D12〉
where

A12 = (D1 ×D2) ∪ (U1 × U2) D12 = D1 ×D2

©12((a1, b1), . . . , (ak, bk)) =



{(a, b) ∈ A12 : a ∈ ©1(a1, . . . , ak)} if c ∈ Σ1 \ Σ2

{(a, b) ∈ A12 : b ∈ ©2(b1 , . . . , bk )} if c ∈ Σ2 \ Σ1

{(a, b) ∈ A12 : a ∈ ©1(a1, . . . , ak)

and b ∈ ©2(b1 , . . . , bk )} if c ∈ Σ1 ∩ Σ2

Note that ©12((a1, b1), . . . , (ak, bk)) = ∅
if ©1(a1, . . . , ak) ⊆ D1 and ©2(a1, . . . , ak) ⊆ U2 or vice versa.

Consider the projection functions, i.e., π1(x, y) = x and π2(x, y) = y.
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Facts about strict-product

• π1 and π2 are strict-morphisms

• BVal(M1 ∗M2) = BVal(MΣ1∪Σ2
1 ) ∩ BVal(MΣ1∪Σ2

2 ).

– If v ∈ Val(M1 ∗M2) then (πk ◦ v) ∈ Val(Mk
Σ1∪Σ2)

– v1 ∈ Val(MΣ1∪Σ2
1 ), v2 ∈ Val(MΣ1∪Σ2

2 ), and v1(ϕ) ∈ D1 iff v2(ϕ) ∈ D2 for every
A ∈ LΣ1∪Σ2(P ), then v1 ∗ v2 ∈ Val(M1 ∗M2) with v1 ∗ v2(ϕ) = (v1(ϕ), v2(ϕ))

• M1 ?M2 is saturated whenever M1 and M2 are

• 〈Σ1,M1〉 ⊗ 〈Σ2,M2〉 = 〈Σ1 ∪ Σ2,M1 ?M2〉 is the product in all the introduced
categories PNmatr, Rexp, SPNmatr and SRexp.

Modular semantics for combined logics

• BM1?M2=BΣ2
M1
∩ BΣ1

M2

• BM1 t BM2 = BM1?M2

• If M1 and M2 saturated then `M1 t `M2 = `M1?M2

• If either M1 or M2 not saturated it may happen that `M1 t `M2 ( `M1?M2

• BMω
1 ?Mω

2
= (BΣ2

M1
)∩ ∩ (BΣ1

M2
)∩

• `M1 t `M2 = `Mω
1 ?Mω

2
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Back to combining AND and OR

Let

CPL∧ = LM∧

M∧ :

∧̃ 0 1

0 0 0
1 0 1

CPL∨ = LM∨

M∨ :

∨̃ 0 1

0 0 1
1 1 1

M∧ ?M∨ = M∧∨ is the ∧∨-fragment of classical Boolean matrix
M∧ is saturated but M∨ is not. p ∨ q BM∨ p, q but p ∨ q 6`M∨ p and p ∨ q 6`M∨ q

`∧∨ω=`M∧?Mω
∨ and M∧∨ ∼= M∧ ?Mω

∨ where
M∧∨ = 〈℘(N), ·#, {N}〉 with X∨#Y = X ∪ Y and

X∧#Y =

{
N if X = Y = N
℘(N) otherwise

Facts:

• There is no set× fmla-axiomatization of classical logic by gathering the axiomati-
zation of the fragments with a single connective

• Classical logic can be set × set-axiomatized by joining the axiomatizations for
each of the connectives
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Partiality allows for a badly behaved sum

LetM = {〈Σ,Mi〉 : i ∈ I} be a set of PNmatrices, each Mi = 〈Vi, Di, ·Mi〉. The sum of
M is the PNmatrix (Σ,⊕M) where ⊕M = 〈V,D, ·⊕〉 and

V =
⋃
i∈I

({i} × Vi)

D =
⋃
i∈I

({i} ×Di)

©⊕((i1, x1), . . . , (in, xn)) =

{
{i} × ©Mi(x1, . . . , xn)) if i = i1 = · · · = in

∅ otherwise

for n ∈ N0 and c ∈ Σ(n).
(Σ,⊕M) is a coproduct ofM in PNMatr, with inclusion homomorphisms

ιi : 〈Σ,Mi〉 → 〈Σ,⊕M〉
defined, for each i ∈ I and each x ∈ Vi, by ιi(x) = (i, x).
Hence, ⋃

i∈I
BVal(Mi) ⊆ BVal(⊕M)

Perhaps surprisingly, however, it may happen that BVal(⊕M) 6=
⋃
i∈I BVal(Mi).

A sufficient condition for the equality to hold is that the Σ contains at least a connective with
arity > 1.
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Gathering the Lindenbaum bundle into a Pmatrix

For Γ ⊆ LΣ(P ), let MΓ = 〈LΣ(P ), ·,Γ〉.

Lindenbaum bundle

Lind(〈Σ,B〉) = {MΓ : Γ 6B (LΣ(P ) \ Γ)}

Lindenbaum Pmatrix

Let
Lind⊕(〈Σ,B〉) := ⊕Lind(〈Σ,B〉)

and for set× fmla-cr `

Lind⊕(〈Σ,`〉) := ⊕Lind(〈Σ,B`〉)
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Galois connection between Rexp and Biv

Consider the functors, in this case, also lattice morphisms

BVal : Rexp→ Biv such that BVal(〈Σ,M〉) = 〈Σ,BVal(M)〉

Lind⊕ : Biv→ Rexp by Lind⊕(〈Σ,B〉) = 〈Σ,⊕Lind(B)〉

BVal+1 : SRexp→ Biv∩ such that BVal+1(〈Σ,M〉) = 〈Σ, {1} ∪ BVal(M)〉

Lind−1⊕ : Biv∩ → SRexp by Lind−1⊕ (〈Σ,B〉) = 〈Σ,⊕Lind(B \ {1})〉

Facts:

• The functors Lind⊕,BVal constitute a Galois connection, that is, for every
〈Σ,B〉 in Biv and every 〈Σ0,M0〉 in Rexp:

Lind⊕(〈Σ,B〉) v 〈Σ0,M0〉 iff 〈Σ,B〉 v BVal(〈Σ0,M0〉)

• The functors Lind−1⊕ ,BVal
+1 constitute a Galois connection, that is, for ev-

ery 〈Σ,B〉 in Biv∩ and every 〈Σ0,M0〉 in SRexp:

Lind−1⊕ (〈Σ,B〉) v 〈Σ0,M0〉 iff 〈Σ,B〉 v BVal+1(〈Σ0,M0〉)
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Categorical view

PNMatr Rexp Biv Multop>
Q

BVal

Lind⊕

∼=
Mult

SPNMatr SRexp Biv∩ Singop>
Q

BVal+1

Lind−1⊕

∼=
Sing

• Is there Adjunction between PNmatr and Mult? How to associate a logic
with a PNmatrix such that there is a unique morphism to every PNmatrix
characterizing a weaker logic?

• Rexp deals with unicity but in Rexp but the existent of strict morphisms
is clearly insufficient to detect if PNmatrices define the same logic, and
the kernels of Sing and Mult much more complex on PNmatrices than in
matrices.
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Problems BM1

?
=BM2

and `M1

?
=`M2

Example

¬M1(x)

0 1
1 0
T 0, T

¬M2(x)

0 1
1 0
T 1, T

¬M3(x)

0 1
1 0
T 0, 1, T

¬M4(x)

0 1
1 0
T 0, T
T ′ 1, T

Facts:

• BVal(M1) = BVal(M2) = BVal(M3) = BVal(M4)

• BM1=BM2=BM3=BM4 and `M1=`M2=`M3=`M4

• M1 v M3, M2 v M3

• M1 6v M2, M2 6v M1 and M3 6v M4

• M4 v M3 and M3 is a quotient of M4.

Furthermore, the problem of, given arbitrary finite (P)Nmatrices the problem `M1

?
=`M2

is undecidable.
In the multiple-conclusion setting it is still open but we suspect that the same holds for
deciding BM1=BM2 .
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What changes regarding strict morphisms and quotients

Over matrices

• Kernels of strict morphisms between matrices are congruences compatible with
the set of designated elements and surjective strict morphisms (and quotients)
preserve the logic (both single and multiple)

• For finite reduced Σ-matrices M1 and M2 BM1=BM2 IFF there are strict morphisms
f12 : M1 → M2 and f21 : M2 → M1 (Shoesmith and Smiley 1978)

Over PNmatrices

• Any quotient of a PNmatrix by an equivalence relation compatible with the set
of designated values is still a PNmatrix and induces a strict morphism (and vice-
versa)

• A strict (surjective or not) morphism f : M1 → M2 only implies that BM2⊆BM1

• Strict morphisms (and quotients) of PNmatrices may generate stronger logics

• Of course that if there are strict morphisms f12 : M1 → M2 and f21 : M2 → M1

then BM1=BM2 but the other direction fails

• Perhaps a local explanation for BM1=BM2 soundness is not possible
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Some applications of PNmatrices and strict morphisms

• There is a general recipe that generates semantics for axiomatic extensions by pre-images of
the original semantics, yielding

- a denumerable (but quite syntactic) semantics for axiomatic extensions of logics with de-
numerable PNmatrix semantics (including intuitionistic and every modal logics, remem-
ber that modus ponnens and generalization can be captured by a 2-valued Nmatrix)

- a finiteness preserving semantics for a wide range of base logics and axioms satisfying
certain shapes

• Going back to Avron’s logic for processors dealing with partial informations from various
sources, by coding it in a finite PNmatrix and using the algorithm generating analytical set× set
-axiomatization we discovered that this logic was decidable in PTIME since the generated
rules are all of type set× fmla (no branching needed)

∧S f ⊥ > t
f f f f f
⊥ f f,⊥ f f,⊥
> f f > >
t f f,⊥ > t,>

∨S f ⊥ > t
f f,> t,⊥ > t
⊥ t,⊥ t,⊥ t t
> > t > t
t t t t t

¬S
f t
⊥ ⊥
> >
t f

p , q

p ∧ q r1

p ∧ q
p

r2

p ∧ q
q

r3

¬p
¬(p ∧ q) r4

¬q
¬(p ∧ q) r5

p

p ∨ q r6

q

p ∨ q r7

¬(p ∨ q)
¬p r8

¬(p ∨ q)
¬q r9

¬p , ¬q
¬(p ∨ q) r10

p

¬¬p r11

¬¬p
p

r12

TACL2022@Coimbra 32



Bibliography

Non-referenced facts and examples were taken from:

• Axiomatizing non-deterministic many-valued generalized CRs
Synthese [Caleiro & M. 2019]

• Analytic calculi for monadic PNmatrices
WoLLIC [Caleiro & M. 2019]

• On axioms and rexpansions
Book chapter, OCL dedicated to Arnon Avron, [Caleiro & M. 2020]

• Computational properties of partial non-deterministic logical matrices
LFCS [Caleiro, Filipe & M. 2021]

• Comparing logics induced by partial non-deterministic semantics
In preparation [Caleiro, Filipe & M.]

TACL2022@Coimbra 33



Extra slide for full circle: A proper PNmatrix

The strengthening of the logic of classical implication with p→(¬p→¬q)
is characterized by M = 〈{00, 01, 10, 11}, {10, 11}, ·M〉 with

→M 00 01 10 11

00 10 10 10 ∅
01 10 10, 11 10 11
10 00, 01 00, 01 10 ∅
11 ∅ 01 ∅ 11

¬M

00 00, 01
01 10, 11
10 00, 01
11 11

Maximal sub-Nmatrices:
M{00,01,10} = 〈{00, 01, 10}, {10}, ·M〉

→M 00 01 10 ¬M

00 10 10 10 00, 01
01 10 10, 11 10 10, 11
10 00, 01 00, 01 10 00, 01

M{01,11} = 〈{00, 11}, {11}, ·M〉

→M]
Ax

01 11 ¬M

01 11 11 11
11 01 11 11

BM is not characterizable by any finite set of finite matrices!

PNmatrices are very maleable semantics for compositional semantics
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