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Plan

Logics and their combination

- Tarskian consequence relations: single-conclusion set x fmla

- Scoftian consequence relations: multiple-conclusion set x set

- Posetal categories Mult and Sing

- Motivation for PNmatrices: modular semantics for combined logics

Semantics: Generalized truth-functionality

- Bivaluations and categories Biv and Biv'"' (isomorphic to Mult°? and Sing°?)
- Semantical units: from matrices o PNmatrices

- Categories PNmatr and SPNmatr and their posetal quotients Rexp and
SRexp

- Galois connection between Rexp and SRexp and Mult°? and Sing°?

Strict morphisms and quotients of PNmatrices, what is new?



signatures

Propositional languages

substitutions

single-conclusion rules

mulfiple-conclusion rules
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Basic concepts

3. Np-indexed set of connectives
21N ={Z" 2™,
31U = {2§") U 3, }neno
21\ B2 = {Z(\ 22} nen,

L = Lx(P) givenby ¢ ::= P |©O(¢, ..., )
for© € ¥

o: P — L, o) = () when o(p) =
L with ,{e} CL
()

T
~ withT,A C L
A



Notion of logic

as proposed by Scott and Shoesmith&Smiley in the 70°s
Internalizes case analysis

Reasoning = From certain premise-set one reaches a conclusion-set
Language (L) = Set of formulas (¢, ¥, §,v, 1, &, . ..)
' = premise-set A = conclusion-set

We write T' > A to say:
from I" we conclude A or
A is a consequence of T' or




Single- and multiple-conclusion logics

A Scottian consequence relatfion (set x set-cr)is a >C p(L) X g(L) satisfying:

O)I'> AifT'N A # 0 (overlap)
D) rur's AUA’ifIr > A (diution)
© I'>AIfTUQ > QU A’ for every partition (€2, 2) of some ® C L (cut for sets)

(8) I'? > A“ for any substitution o : P — L if ' > A (substitution invariance)

Given a set x set-Cr >, its single conclusion fragment F. =1 N(p(L) x L)
is a Tarskian consequence relafion (set x set-cr) satisfying:

(R T I ¢ if p €T (reflexivity),
(M) TUTY F ¢if T' F ¢ (Mmonofonicity),

MTIEFeifAFpandI  a forevery ¢ € A (transitivity)

(8) I'? I 2 for any substitution o : P — L if ' + ¢ (substitution invariance)

e A set of set x set-rules R is a basis for > g, the smallest set x set-cr containing R.
e A set of set x fmla-rules R is a basis for g, the smallest set x fmla-cr containing R.



Categories Sing and Mult

Let Mult and Sing be the posetal categories where the objects are consequence
relations of the correspondent type and are ordered by inclusion:

Mult Objects: (X, >) where > is O set X set-Cr
Morphisms: (31,>1) E (Zg,>2) if ¥1 C ¥g and >1C>9
Sing Objects: (X, ) where I is a set x fmla-cr
Morphisms: (X1,F1) E (X2,F2) if ¥1 C X3 and 1 ChH
Facts:

e Both are complete lattices.

¢ Sing is embeddable in Mult by sending (X, F) to (3, >p)
where > is the smallest set x set-cr such that FCr>.

That is,
> Aiffthereisd € AsuchthatT' - é

e Sing is a full subcategory of Mult

e Forxe {>,F}
set X set if oc=p>
set X fmla if x=F

type(x) = {



Two standard ways of presenting a logic

Let L be alanguage, T,AC Landp € L

¢ Via semantics
given M set of models as bivaluations m : L — {true, false}

- Multiple-conclusion (set x set)

I >a A= Ifforevery m € M, m(T') = {true} then true € m(A)
- Single-conclusion (set X set)

' Fam p :=If forevery m € M, m(I') = {true} then m(yp) = true

Dual reading: Premise-set (conjuntive) and conclusion-set (disjunctive).
¢ Via deductive systems

- Multiple-conclusion (set x set)
Given set of R C (L) X g(L) of set X set-rules
I' >gr @ if there is a proof of A from T’
R axiomatizes >

- Single-conclusion (set X set)
Given set of R C p(L) x L of set X set-rules
T’ kg  if there is a proof of ¢ from T using the rules in R
R axiomatizes +

Axiomatizations as basis for the corresponding notion of logic
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Multiple-conclusion calculi and tree-proofs

A calculusis a set of rules (schema) R C (L) X g(L).

Proofs can be arboreal as rules with a conclusion set with more than a formula
impose branching (case split).

Rules with empty conclusion set discontinues the branches where there are applied.
We write T' > A if there is a proof starting with I' and having a formula of A in each non-

discontinued branch.

T'>p Az, Ay, Ag I'>pr Ay
T T
— T \
A A
/O\ %5\ Ao
A1 A3 AG AS A9 |
| | | | A
Ay Ay Ag A1 |
* A1 Ajn \
\ ‘ A
*  Ajg \3
|
Asg Aa

FDR{Ai:iEN}

r

—

Ap

By
/\
Ay B,

> g is the smallest set x set-cr containing R,

If R are all set x fmla then >p=>} .




Combining logics by joining their calculi: fibring

Being complete lattices both Mult and Sing have joins and meets.
Given two logics (X1, o<1) and (Xa, ox2) of the same type, either set X set oOr set x fmla,
(either both in Mult or both in Sing)
Their join is
(X1, 0x1) U (Bg,x2) = (31 U Xa, x1 @ xX2)
where o; e 3 is the smallest cr of the same type over Ly, s, (P) containing «c; and oa.
Their meet is simply
(X1,0x1) M (g, x2) = (31 N g, o1 N x2)
Facts:
Given two sets of rules of the appropriate type R, and Ry we have that

Och L] OCR2 :ocR1UR2
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Examples of combining logics by joining their calculi

e Language extensions

Adding new connectives to a logic without imposing anything about them

Given > and - over g C ¥ let >* and H* over &

I > A iff

Lo > Ag forsome Iy C Ly, (P), Ag C Ly (P).0: P — Lx(P)withT'g CT, A7 C A

e Fusion of modal logics

Seminal example and well understood via gluing Kripke frames for each of the com-
bined logic.

e Combining classical AND and OR
Let R\ be formed by the set x set-rules

pPAQ  PAgQ P pVp
P q pVq D
PAq P _q pvg pV(qVr)
q PAg qVp (pVr)Vq

Can we combine the semantics of the A and Vv fragments of Boolean classical martrix
into a semantics for g, ., ?

TACL2022@Coimbra 10



Semantics of bivaluations
Susko thesis (1977), models are bivaluations 0 = true and 1 = false
Bival(L) = {b: L — {0,1}}

Given B C Bival(L) closed for substitutions let

I' >g Aifandonlyifthereisno b € B suchthat b(I') C {1} and b(A) C {0}.

— >p iS A set X set-Cr

— =k, is O set X set-fmla

Ultimately, the various kinds of semantics (matrices, Kripke/neighbborhood frames, relo-
fional/topological structures) are just clever ways of presenting bivaluations exploring

the algebraic structure of the language.

TACL2022@Coimbra 11



Bivaluations in set x set and set x fmla
Given {b; : ¢ € I} C B theirintersection is
([bi:ieI}=b
el
where b(A) = 1iff b;(A) = 1foreveryi € I.
Let B™ denote the closure for intersections of bivaluations in B.

Facts: >g, =D, Iff By = By and Fg,=Fs, iff B{' = B}

Given ¥, C ¥ and B C Bival(Lx,(P)).let B¥ = {boskely, : b € B} is closed for
substitutions.

Facts:  >gs=p>F  and Fps=F3

skely, is a bijection between Ly, (P) and Lyx(P) capturing the view of an arbi-
frary Lx(P) formula from the point of view of 3, The idea is simply to replace
3\ ¥p-headed formulas by dedicated variables, just renaming the original vari-

ables.
TACL2022@Coimbra 12



Posetal categories Biv and Biv"

For B C Bival(Lx(P)) closed for substitutions let
Mult(B) = (¥,>g) and Sing(B) = (X,Fs).
Biv:
Objects: (¥, B) with B C Bival(Lyx (P)) closed for substitutions
Morphisms: (21, B1) T (22, By) iff 85 C 3 and By C B3,
Biv™:
Objects: (X, B) with B C Bival(Lx(P)) closed for substitutions and intersections
Morphisms: (21, B1) T (22, By) iff 5 C 3 and By C B3,
Facts

e Mult : Biv — Mult is a dual order isomorphism, that is:
Mult is bijective, and (3, B) C (X, Bo) iff (30, >B,) C (3, >8).

e Sing : Biv"' — Sing is a dual order isomorphism, that is:
Sing is bijective, and (%, B) C (X, Bo) iff (£0,F8s,) C (X, FB).

e (3,B1) U (3,B2) = (3, B) where B is the closure for substitutions of By U B2

e (%,B1) M (%,B2) = (%,B1 NBz)
e Funct((X,B1) U (X,B2)) = Funct((X, B1)) M Funct((X, B2)) for Funct € {Mult, Sing}
e Funct({(X,B1) M (X,B2)) = Funct((X, B1)) U Funct((3, B2)) for Funct € {Mult, Sing}
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Basic examples

The smallest logic in X

Let I Deivazs(p)) AT NA F#

The largest logic in X

I' >emptyset A holds forevery I'y A C Ly (P)

The most common general way of defining setfs of bivaluations closed by sub-
stitutions is by considering logical matrices.

TACL2022@Coimbra 14



Logics induced by logical matrices

Given signature ¥ = {¥},eny and fixed L = Lx(P)
Logical matrix M = (V, -y, D)
where (V, .\) is an algebra of fruth-values
set endowed with operations ©y : V™ — V for © € (™)

D C V is the set of designated elements corresponding fo 1

Valuations over M are v : L — V satisfying

Given valuation v and substitution o, v o ¢ is Also a valuation. Where v o o(¢) = v(p7)
Each valuation induces a bivaluation

0 ifo(p) D
The set BVal(M) = By = {b, : v valuation over M} is closed under substitutions, since
by 00 = byoo
Let >y=>pg,, aONd Fy=FB,=F5,,.
I' > A iff there is no valuation v over M such that v(I') € D and v(¢) C V' \ D.
Or equivalently, for every v over M, v(T') C D implies v(A) N D # 0.

by () — {1 if v(p) € D

There is no finite matrix M such that >y =>gjvai(zy (P)) NOT Fv=Femptyset!
TACL2022@Coimbra 15



Extending fruth-functionality: non-determinism and partiality

A 3-matrixis a tuple M = (V, -m, D)

- Vis a non-empty set (of tfruth-values)
- D C V (the set of designafed truth-vales)
- Oy:V™ - Vforeachc € (™

Other ways of defining sets of bivaluations closed for substitution:
non-determinism A S-Nmaftrixis ... with©y : V* — (V) \ {0}

partiality A 3-Pmatrixis ... with©y : V* — {{a} : a € V} U {0}

pboth A 3Z-PNmatrixis... with©y : V" — oV

Valuations over M are v : L — V satisfying

The set BVal(M) = By = {b, : v valuation over M} is closed under substitutions, since
by 0 0 = byoe ONd we let also >y =g, and Fy=tg,,=tv,,

TACL2022@Coimbra 16



Almost(!) every logic can be characterized by a single PNmatrix
enough for signature to contain a connective of arity > 1

PNmatrices retain many nice properties of matrices

Many non-finitely valued logics have finite PNsemanftics

Natural semantics for logical strengthenings and combined logics

Finite PNmatrices still can be axiomatized by analytical set x set-calculi

17



Some 2-valued Nmatrices you should know

©free | 0 1
Mfree 0 0, 1 0, 1
1 |0,1 0,1
—mp| 0 1
Mmp 0 ‘ 0,1 0,1 >, Isaxiomatized by modus ponens ’%‘*‘1
0,1

DMy 1S OXiOMatized by the emptyset of rules

| 0
Mg | 0,1 1
None of the logics induced by the Nmatrices above is induced by a finite matrix (or
even by a finite set of finite matrices.

Msq D> M, is axiomatized by CJ-generalization Dlp

e 22" pn-ary Boolean functions and

e 32" p-ary Boolean multi-functions (81 binary Boolean multi-functions, 16 of them
are Boolean functions)

e Hence, 65 that are not functions

e Every set of Boolean multi-functions generates a different logic that can automat-
ically be provided with an analytic axiomatization

TACL2022@Coimbra 18



Language extensions and non-determinism

Adding new connectives to a logic without imposing anything on them
Given Xo-PNmatrix M = (V, -y, D) let M*® = (V, .=, D) with

©M(a1,...,ak) |f©€ 20
1% otherwise

O©(aiy...,ar) = {
Facts:

e BVal(MZ) = BVal(M)®
o Dy==0>} and Fy==F;

e If general, if X \ 3, contains a 0-ary connective then there is no single
maitrix characterizing >* or =

e If general, if £ \ ¥, contains a n-ary connective with n > 0 then there is
no finite set of finite matrices characterizing >* or -*

TACL2022@Coimbra 19



More examples

Matrix: Mpg = <{f, 1,T, t}7 ‘Mpg » {T7 t}>

Dunn-Belnap logic, dealing with partial information about atomic formulas

—'Mops (:11) AMps ‘ f L T t VMoe ‘ f L Tt
f t F\fr r r f F |1 r 4L Tt
L Tl L1 Lol o1t ot
T T T f f T T T T t T t
t I t f L T t t t t t t

Nmatrix: Mp = ({f, L, T, t}, -mp, { T, ¢}
Processors logic dealing with partial information about complex formulas decidable in PTIME

v, () A | F L T Vi | f 1L Tt
! t f1fr f 5 f f 16T Lt T
1 1 L 1f L Ff fL 1| Lt Lyttt
T T T |\f f£f T T T T t Tt
t f t | f f,L T T,t t t t t t
Pmatrix: Mk = ({0, a, b, 1}, v, {b,1})
Kleene of order, two matrices put together
| = () Avg |0 a b 1 Viek |0 a b 1
0 1 0 0O 0 0 o0 0 0 a b 1
a a a 0 a 0 a a a a 0 1
b b b |0 0 b b b b 0 b 1
1 0 1 0 a b 1 1 1 1 1 1

TACL2022@Coimbra



Categories of PNmatrices PNmatr and Rexp

A function f : V3 — V4 is a strict morphism between

M; = (21, M, D1) and My = (2,5, v, D2) if 2 C X7 and safisfies f~1(D3) = D; and
for© € X7,

F©uy (21, .., 20)) C O, (F(21)5-- -5 f(2n))
PNmatr:
Objects: (X, M) with M a PNmatrix over X
Morphisms: strict morphisms between PNmatrices
Rexp: Avron called pre-images by strict homomorphisms rexpansions
Objects: (X, M) with M a PNmatrix over X

Morphisms: (31,M;) E (3g,My) iff X2 C 37 and there is some strict morphism
between M; and M. Equivalently, if M, is a rexpansion of M.

Facts:

e Rexp is a posetal category

Rexp is the result quotientating the hom sets in PNmatr intfo a single element

The quotient functor @ : PNmatr — Rexp is continuous and cocontinuous

Q fransforms products in meets and coproducts in joins

TACL2022@Coimbra 2]



Saturation and the w-power

We say a PNmatrix M is saturated whenever >y =0, that is, whenever for ev-
eryI' >y A iff thereis § € A such that I -y 6.

Let SPNmatr and SRexp the full subcategories of PNmatr and Rexp where
the objects are restricted to saturated PNmatrices.

Let M = (V¥, -, D*) with

O, (S15.+-38k) = {s € V¥ :5(1) € Oy(si(t),...,sk(?))}

Facts:

(3, M) is saturated if and only if BVal(M)™ = {1} U BVal(M)

|_M = |_Mw

® Dye = Py

The Boolean Nmatrices shown before are all saturated

22



Strict product of PNmatrices

Given X;- and ¥,-PNmatrices My = (A1, -1, D1) and My = (Asg, -5, D2),
letU; = A; \D1 and U; = A, \D2
Their strict product is the 31 U 35-PNmatrix

My * Mo = (Aj2, 12, D12)
where

A2 = (D1 X D2) U (Uy x Us) D> = Dy X D,

{(a,b) € Aix:a 6@1(a1,...,ak)} if c € 21\22
{(a,b) € A12 : b €O2(b1,...,br)} ifce€ X2\,

{(a,b) € A12 :a € ©1(a1,...,ar)
Ondb6©2(b1,...,bk)} ifce >3 Ns

©12((ala bl)a ooy (ag, bk)) =

Note that ©,5((a1,b1), ..., (ak, bx)) =0
if©1(a1y...,ak) € Dy and ©;(a1,...,ar) C U, Or vice versa.

Consider the projection functions, i.e., w1 (x,y) = z and wa(z,y) = y.

TACL2022@Coimbra



Facts about strict-product

1 and 7 Are strict-morphisms

BVal(My * Mz) = BVal(My™~*?) N BVal(My™>?).

- Ifv € Val(M; * M) then (mx 0 v) € Val(M;>*Y>2)
- vy € Val(MI19*2), v, € Val(M2J*V>2), and vi(p) € D; iff va() € D, for every
A € Ly, us,(P).then vy x vy € Val(M; * My) with vy * v2(p) = (v1(p),v2(p))

M; % M, is saturated whenever M; and M, are

(¥1,M1) ® (¥2,M2) = (21 U X2, M; xMz) is the product in all the introduced
categories PNmatr, Rexp, SPNmatr and SRexp.

Modular semantics for combined logics
X >
o BMl*MzzBMi n BM;

° I>M1 I—I I>M2 = I>M1*M2

If M; and My saturated then by, U by, = Fugg iy

If either My or My not saturated it may happen that Fyr, U v, © Fvig s

Buwwnty = (By?)™ N (BI)"

Favy U EMy, = Fywsvy

TACL2022@Coimbra 24



Back to combining AND and OR

CPL, = Ly, CPL, = Ly,
Let Alo 1 vio 1
M : 0|0 O M., : 0|0 1
1/0 1 1 /1 1
Ma * M, = My is the Av-fragment of classical Boolean matrix
M, is saturated but M., is not. y y y

|_/\\/“’:|_M/\*M$ Ohd M/\\/ g M/\ * M@ Where
My = (p(N), -4, {N}) with XV4Y = X UY and

XALY = N |fX:'Y:N
e(N) otherwise

Facts:

e There is no set x fmla-axiomatization of classical logic by gathering the axiomati-
zation of the fragments with a single connective

e Classical logic can be set x set-axiomatized by joining the axiomatizations for
each of the connectives

25



Partiality allows for a badly behaved sum

Let M = {(E,M;) : ¢ € I} be aset of PNmatrices, each M; = (V;, D;, v, ). The sum of
M is the PNmatrix (2, M) where M = (V, D, -g) and

V=i x W)

i€l

D = | J{i} x Dy)
i€l
. . {i} X Oy, (T1,y..0yxpn)) fi=i1=--- =1,
© cees(Inyxn)) = ¢ .
69((7'17:31)7 7(2 s L )) {0 otherwise
forn € Ngand ¢ € (™),
(X, eM) is a coproduct of M in PNMatr, with inclusion homomorphisms
L 2 (B, M;) = (2, M)

defined, foreach i € I and each « € V;, by ¢;(x) = (¢, ).
Hence,

U BVal(M;) C BVal(®M)

1€l
Perhaps surprisingly, however, it may happen that BVal(@M) # ;< BVal(M;).
A sufficient condition for the equality to hold is that the X contains atf least a connective with
arity > 1.

TACL2022@Coimbra 26



Gathering the Lindenbaum bundle into a Pmatrix

FOI’I‘ g LE(P), |eT MI‘ - <LE(P),',F>.

Lindenbaum bundle
Lind((S,>)) = {Mr : T ¢ (Le(P) \ T)}

Lindenbaum Pmatrix

Let
Lindg ({3, >)) := @Lind({X, >))

and for set x fmla-cr -

Lindg ({(£, F)) := @Lind ({3, >+))

TACL2022@Coimbra
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Galois connection between Rexp and Biv

Consider the functors

BVal : Rexp — Biv such that BVal((X, M)) = (X, BVal(M))

Lindg : Biv — Rexp by Lindg ({3, B)) = (X, ®Lind(B))

BVal™ : SRexp — Biv" such that BVal™ ({3, M)) = (3, {1} U BVal(M))
Lindg' : Biv"' — SRexp by Lindg'((%, B)) = (X, ®Lind(B \ {1}))

Facts:

e The functors Lindg, BVal constitute a Galois connection, that is, for every
(X%, B) in Biv and every (¥4, Mj) in Rexp:

Lindg ((£, B)) C (Z0,Mp) iff (X, B) C BVal({Zo, Mo))

e The functors Linde_;, BVal™ constitute a Galois connection, that is, for ev-
ery (3,B) in Biv" and every (X,, M) in SRexp:

Lindz'((%, B)) C (So,My) iff (X, B) C BVal* ({2, Mo))

28



Categorical view

BVal
Q ~ T . Mult
PNMatr — Rexp T Biv =
-~ -
Lind@

BVal™
Q T Sing
SPNMatr —— SRexp T Biv"
~ —
Linde_a1

Is there Adjunction between PNmatr and Mult? How to associate a logic
with a PNmatrix such that there is a unique morphism to every PNmatrix

characterizing a weaker logic?

Rexp deals with unicity but in Rexp but the existent of strict morphisms
is clearly insufficient to detect if PNmatrices define the same logic, and
the kernels of Sing and Mult much more complex on PNmatrices than in

matrices.

29



? ?
Problems >y, =, and Fy, =k,

Example
ML (T
i, (@) s (@) ERTCS pp——1C)
0 1 0 1 0 1 1 0
1 0 1 0 1 0 T 0.T
T| 0,T T| 1,T T| 0,1, T T 1:T
Facts:

BVal(Ml) = BV&I(Mz) = BV&I(M,?,) = BV&](M4)

o Dy, =Dy, =DMy =Dm, ANA i, =k, =Fys=Fw,

M; & M3, My L M3

o My £ Mz, My [Z My and M3 [Z My

e M, C M3 and Mjs is a quotient of My.

Furthermore, the problem of, given arbitrary finite (P)Nmatrices the problem l—Ml;I—M2

is undecidable.

In the multiple-conclusion sefting it is still open but we suspect that the same holds for

deciding >y, =>m, -

30



What changes regarding strict morphisms and quotients
Over matrices

e Kernels of strict morphisms between matrices are congruences compatible with
the set of designated elements and surjective strict morphisms (and quoftients)
preserve the logic (both single and multiple)

e For finite reduced X-matrices M; and My >y, =, there are strict morphisms
f12 : M; — My and f21 : My — My (Shoesmith and Smiley 1978)

Over PNmaftrices

o Any quotient of a PNmatrix by an equivalence relation compatible with the set
of designated values is still a PNmatrix and induces a strict morphism (and vice-
versa)

e A strict (surjective or not) morphism f : M; — My only implies that oy, T,
o Strict morphisms (and quoftients) of PNmatrices may generate stronger logics

e Of course that if there are strict morphisms f12 : My — My and fa1 : My — My
then >y, =>u, Ut the other direction fails

e Perhaps a local explanation for >y, =>n, soundness is not possible

31



Some applications of PNmatrices and strict morphisms

e There is a general recipe that generates semantics for axiomatic extensions by pre-images of
the original semantics, yielding

- adenumerable (but quite syntactic) semantics for axiomatic extensions of logics with de-
numerable PNmatrix semantics (including infuitionistic and every modal logics, remem-
ber that modus ponnens and generalization can be captured by a 2-valued Nmatrix)

- a finiteness preserving semantics for a wide range of base logics and axioms satisfying
certain shapes

e Going back to Avron’s logic for processors dealing with partial informnations from various
sources, by coding it in a finite PNmatrix and using the algorithm generating analytical set x set
-axiomatization we discovered that this logic was decidable in PTIME since the generated
rules are all of type set x fmla (no branching needed)

Ns | f 1L T t Vs T t —g
f|f f f f fl 6T L T ot f t
LlFf £L £ £L L tL tLl ot ot 1| L
T|f £ T T T T t Tt T T
t |f £L T ¢ T t t t t ot t | fF

P, q PAgQ PAQ —p —q

™ T kg ke )

pAg ™t p qg P —(Ag " —(pAg) P

P q —(pVq) -(pVq) —-p, °q
pvag ® pvqg " -» ® ¢ ° =(pve ™°

D ——p
T11 T Tri12
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Extra slide for full circle: A proper PNmatrix

The strengthening of the logic of classical implication with p —(—p— —q)
is characterized by M = ({00,01,10,11}, {10, 11}, -jy) with

—m | 00 01 10 11 M
00 10 10 10 0 00 | 00,01
01 10 10,11 10 11 01 |10,11
10 | 00,01 00,01 10 O 10 | 00,01
11 0 01 0 11 11 11

Maximal sub-Nmatrices:

Myo0,01,10} = ({00,01,10}, {10}, -m) Myo1,113 = ({00, 11}, {11}, -m)
—Mm | 00 01 10| - —e |01 11 ‘ -
Ax
00 10 10 10 | 00,01 01 11 11| 11
01 10 10,11 10| 10,11 11 01 11| 11

10 | 00,01 00,01 10 | 00,01

PNmatrices are very maleable semantics for compositional semantics
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