Internal Factorisation Systems

Sanjiv Ranchod

University of Cape Town

rncsan003@myuct.ac.za

TACL, June 2022

Sanjiv Ranchod (UCT)

1/35

Overview

1 Internal Categories and Factorisation Systems

- 2 Internal Factorisation Systems
- 3 The Case for Mal'tsev Categories
- 4 The Case for Monoids

5 Future Work

Internal Categories

Let $\mathbb C$ be an category with pullbacks. An **internal category**, ${\mathcal C},$ in $\mathbb C$ is a diagram

$$C_0 \xrightarrow[]{e}{c}{c}{c} C_1 \xleftarrow{m}{c} C \xleftarrow{m}{c} C \xleftarrow{m}{c} C$$

- C_0 : Object of objects
- C_1 : Object of morphisms
- $C^{\leftarrow\leftarrow}$: Object of composable morphisms
- d: Domain morphism
- c: Codomain morphism
- e: Morphism of identities
- m: Composition morphism

Internal Categories

Such that the morphisms satisfy the following four commutative diagrams

where $C^{\leftarrow\leftarrow\leftarrow}$ is defined as the pullback

4/35

Let \mathbb{C} be a category, and let $f : X \to Y$ and $g : X' \to Y'$ be two morphisms in \mathbb{C} . f is **orthogonal** to g, written $f \downarrow g$, if for all morphisms $u : X \to X'$ and $v : Y \to Y'$ in \mathbb{C} with vf = gu, there exists a unique morphism $z : Y \to X'$ such that u = zf and v = gz, as in the following commutative diagram

For two morphisms f and g in a category \mathbb{C} , with $f \downarrow g$, we have a correspondence between the diagrams:

For two morphisms f and g in a category \mathbb{C} , with $f \downarrow g$, we have a correspondence between the diagrams:

[Kelly] For two morphisms $f : X \to X'$ and $g : Y \to Y'$ in a category \mathbb{C} , we have that $f \downarrow g$ if and only if the following square is a pullback in **Sets**:

Let \mathcal{E} and \mathcal{M} be two classes of morphisms of a category \mathbb{C} . Then \mathcal{E} is **orthogonal** \mathcal{M} , written $\mathcal{E} \downarrow \mathcal{M}$, if for all morphisms e in \mathcal{E} and m in \mathcal{M} , we have that $e \downarrow m$.

Factorisations

Let ${\mathcal E}$ and ${\mathcal M}$ be two classes of morphisms of a category ${\mathbb C}.$

An $(\mathcal{E}, \mathcal{M})$ -factorisation of a morphism $f : A \to B$ in \mathbb{C} is a pair of morphisms $e : A \to I$ in \mathcal{E} and $m : I \to B$ in \mathcal{M} such that the following diagram commutes:

We say that \mathbb{C} has $(\mathcal{E}, \mathcal{M})$ -factorisations if every morphism of \mathbb{C} has an $(\mathcal{E}, \mathcal{M})$ -factorisation.

- Let \mathbb{C} be a category and let \mathcal{E} and \mathcal{M} be two classes of morphisms of \mathbb{C} . Then the pair $(\mathcal{E}, \mathcal{M})$ forms a **factorisation system** on \mathbb{C} if the following four conditions are met:
- FS1. ${\mathcal E}$ and ${\mathcal M}$ contain all the isomorphisms of ${\mathbb C}.$
- FS2. ${\mathcal E}$ and ${\mathcal M}$ are closed under composition.
- FS3. $\mathcal{E} \downarrow \mathcal{M}$.
- FS4. \mathbb{C} has $(\mathcal{E}, \mathcal{M})$ -factorisations.

Let \mathbb{C} be a category with pullbacks. Consider an internal category C in \mathbb{C} :

$$C_0 \xrightarrow[\leftarrow]{e}{c} C_1 \xleftarrow[]{m} C^{\leftarrow\leftarrow}$$

A subobject of morphisms of *C* is a subobject of C_1 in \mathbb{C} .

Let \mathbb{C} be a category with pullbacks. Consider an internal category C in \mathbb{C} :

$$C_0 \xrightarrow[\leftarrow]{e}{} c \rightarrow c_1 \xleftarrow[]{m} C \leftarrow c$$

A subobject of morphisms of *C* is a subobject of C_1 in \mathbb{C} .

We therefore consider two subobjects of C_1 :

$$arepsilon: E o C_1$$
 and $\mu: M o C_1$

The **subobject of all morphisms** of an internal category *C* is the subobject $1_{C_1} : C_1 \to C_1$.

The subobject of identity morphisms of an internal category *C* is the subobject $e: C_0 \rightarrow C_1$.

The **subobject of all morphisms** of an internal category *C* is the subobject $1_{C_1} : C_1 \to C_1$.

The subobject of identity morphisms of an internal category *C* is the subobject $e: C_0 \rightarrow C_1$.

For two subobjects of morphisms $\alpha : A \to C_1$ and $\beta : B \to C_1$ of an internal category C, we say that α **contains** β if $\beta \leq \alpha$ as subobjects of C_1 :

The **object of composable morphisms** for two subobject of morphisms $\alpha : A \rightarrow C_1$ and $\beta : B \rightarrow C_1$ is

12/35

The **object of composable morphisms** for two subobject of morphisms $\alpha : A \rightarrow C_1$ and $\beta : B \rightarrow C_1$ is

In the case that $\alpha = \beta$, we will write $A^{\leftarrow \leftarrow}$ for $A^{\leftarrow}A^{\leftarrow}$.

The **object of composable morphisms** for two subobject of morphisms $\alpha : A \rightarrow C_1$ and $\beta : B \rightarrow C_1$ is

In the case that $\alpha = \beta$, we will write $A^{\leftarrow \leftarrow}$ for $A^{\leftarrow}A^{\leftarrow}$.

We similarly define $D^{\leftarrow}B^{\leftarrow}A^{\leftarrow}$ for subobjects of morphisms $\alpha : A \to C_1$, $\beta : B \to C_1$ and $\delta : D \to C_1$.

Let C be an internal category in a category $\mathbb C$ with pullbacks.

The **object of points** of *C* is the pullback:

Let C be an internal category in a category \mathbb{C} with pullbacks.

The **object of points** of *C* is the pullback:

The **object of isomorphisms** of *C* is the pullback:

We define σ as the compositions:

$$\sigma: \operatorname{Iso}(\mathcal{C}) \xrightarrow{\pi_1} \operatorname{Spl}(\mathcal{C}) \xrightarrow{\pi_2} \mathcal{C} \xleftarrow{\pi_1} \mathcal{C}_1$$

We define σ as the compositions:

$$\sigma: \operatorname{Iso}(C) \xrightarrow{\pi_1} \operatorname{Spl}(C) \xrightarrow{\pi_2} C^{\leftarrow\leftarrow} \xrightarrow{\pi_1} C_1$$

Proposition: σ is a monomorphism.

We refer to σ : Iso(C) \rightarrow C_1 as the subobject of isomorphisms.

We define σ as the compositions:

$$\sigma: \operatorname{Iso}(\mathcal{C}) \xrightarrow{\pi_1} \operatorname{Spl}(\mathcal{C}) \xrightarrow{\pi_2} \mathcal{C} \xleftarrow{} \pi_1 \to \mathcal{C}_1$$

Proposition: σ is a monomorphism.

We refer to σ : Iso(*C*) \rightarrow *C*₁ as the **subobject of isomorphisms**.

For a subobject of morphisms $\alpha : A \to C_1$ of an internal category C, we say that α contains all isomorphisms of C if α contains σ .

Closure under composition

A subobject of morphisms $\alpha : A \to C_1$ of an internal category C is **closed under composition** if there exists a morphism $m_\alpha : A^{\leftarrow \leftarrow} \to A$ such that the following diagram commutes:

$$\begin{array}{ccc} A & \stackrel{m_{\alpha}}{\leftarrow} & -\stackrel{m_{\alpha}}{- & - & - & A \\ \alpha \times \alpha & & & & \downarrow \alpha \\ C & \stackrel{m_{\alpha}}{\leftarrow} & \stackrel{m_{\alpha}}{- & - & - & - & - & A \end{array}$$

Closure under composition

A subobject of morphisms $\alpha : A \to C_1$ of an internal category C is **closed under composition** if there exists a morphism $m_\alpha : A^{\leftarrow \leftarrow} \to A$ such that the following diagram commutes:

$$\begin{array}{ccc} A^{\leftarrow\leftarrow} & \xrightarrow{m_{\alpha}} & A \\ \alpha \times \alpha & & & \downarrow \alpha \\ C^{\leftarrow\leftarrow} & \xrightarrow{m} & C_1 \end{array}$$

This composition morphism, m_{α} , inherits the associativity of *m*. That is, the following diagram commutes:

$$\begin{array}{ccc} A^{\leftarrow\leftarrow\leftarrow} \xrightarrow{1\times m_{\alpha}} A^{\leftarrow\leftarrow} \\ m_{\alpha}\times 1 \downarrow & \qquad \qquad \downarrow m_{\alpha} \\ A^{\leftarrow\leftarrow} \xrightarrow{m_{\alpha}} A \end{array}$$

Closure under composition

Proposition: The subobject of all morphisms, 1_{C_1} , the subobject of identity morphisms, *e*, and the subobject of isomorphisms, σ , are all closed under composition.

Let *C* be an internal category and let $\varepsilon : E \to C_1$ and $\mu : M \to C_1$ be two subobjects of morphisms of *C*. Then ε is **orthogonal** to μ , written $\varepsilon \downarrow \mu$ if the following diagram is a pullback

$$\begin{array}{ccc} M^{\leftarrow}C_{1}^{\leftarrow}E^{\leftarrow} & \xrightarrow{m(\mu \times 1) \times 1} & C_{1}^{\leftarrow}E^{\leftarrow} \\ 1 \times m(1 \times \varepsilon) & & & \\ M^{\leftarrow}C_{1}^{\leftarrow} & \xrightarrow{m(\mu \times 1)} & C_{1} \end{array}$$

Factorisation

Let C be an internal category and let $\varepsilon : E \to C_1$ and $\mu : M \to C_1$ be two subobjects of morphisms of C. Then C has (ε, μ) -factorisations if there exists a morphism $\tau : C_1 \to M^{\leftarrow} E^{\leftarrow}$ such that $m(\mu \times \varepsilon)\tau = 1_{C_1}$.

This is equivalent to requiring $m(\mu \times \varepsilon)$ to be a split epimorphism, with a specified splitting.

In **Sets**, due to the Axiom of Choice, one only requires $m(\mu \times \varepsilon)$ be a epimorphism, so why not require only this in general?

Internal Factorisation System

Let *C* be an internal category in a category \mathbb{C} with pullbacks and let $\varepsilon : E \to C_1$ and $\mu : M \to C_1$ be two subobjects of morphisms of *C*. The pair (ε, μ) forms an **internal factorisation system** on *C* if:

IFS1. ε and μ contain all isomorphisms of C: There exist morphisms σ_{ε} and σ_{μ} such the following triangles commute

IFS2. ε and μ are closed under composition: There exist morphism m_{ε} and m_{μ} such that the following squares commute:

Internal Factorisation System

IFS3. $\varepsilon \downarrow \mu$: The following square is a pullback:

$$\begin{array}{ccc} M^{\leftarrow}C_{1}^{\leftarrow}E^{\leftarrow} & \xrightarrow{m(\mu \times 1) \times 1} & C_{1}^{\leftarrow}E^{\leftarrow} \\ 1 \times m(1 \times \varepsilon) & & & \\ & & & \\ M^{\leftarrow}C_{1}^{\leftarrow} & \xrightarrow{m(\mu \times 1)} & C_{1} \end{array}$$

IFS4. C has (ε, μ) -factorisations: There exists a morphism τ such that $m(\mu \times \varepsilon)\tau = 1_{C_1}$

The trivial internal factorisation system

If C is an internal category in a finitely complete category \mathbb{C} , then the pair $(\sigma, 1_{C_1})$ forms an internal factorisation system on C.

The Intersection of ε and μ

For a usual factorisation system $(\mathcal{E}, \mathcal{M})$, the intersection of the two classes, $\mathcal{E} \cap \mathcal{M}$ is the class of isomorphisms.

The Intersection of ε and μ

For a usual factorisation system $(\mathcal{E}, \mathcal{M})$, the intersection of the two classes, $\mathcal{E} \cap \mathcal{M}$ is the class of isomorphisms.

Internally, we have that:

Proposition: If (ε, μ) is an internal factorisation system on an internal category *C*, the following square is a pullback:

Essential Uniqueness of Factorisations

For a usual factorisation system $(\mathcal{E}, \mathcal{M})$, $(\mathcal{E}, \mathcal{M})$ -factorisations are unique up to isomorphism. That is, if f = me = m'e' are two factorisations of f, then there exists an isomorphism φ making the following diagram commute:

Essential Uniqueness of Factorisations

Internally:

Proposition: If (ε, μ) is an internal factorisation system on an internal category *C*, then the following diagram is a pullback:

Note that:

We only require IFS1 and IFS2 to define this notion.

We only require $\mathrm{IFS1},\,\mathrm{IFS2}$ and $\mathrm{IFS3}$ to prove this proposition.

Essential Uniqueness of Factorisations

- Let C be an internal category in a category \mathbb{C} with pullbacks. Let $\varepsilon: E \to C_1$ and $\mu: M \to C_1$ be two subobjects of morphisms of C. TFAE:
 - **(** ε, μ) forms an internal factorisation system on *C*.
 - (ε, μ) satisfies IFS1, IFS2, IFS4 and IFS3^{*} : (ε, μ)-factorisations are unique up to isomorphism.

The Cancellation Properties

For a usual factorisation system (\mathcal{E}, \mathcal{M}), \mathcal{E} satisfies the **right cancellation** property:

if gf and f are in \mathcal{E} , then g is in \mathcal{E} ,

and \mathcal{M} satisfies the left cancellation property:

if gf and g are in \mathcal{M} , then f is in \mathcal{M} .

The cancellation properties

We may define internal versions of these properties, and for an internal factorisation system (ε , μ) on an internal category *C*, ε and μ respectively satisfy them:

Proposition: The following squares are pullbacks:

Let (ε, μ) be an internal factorisation system on an internal category Cand let $\varepsilon' : E' \to C_1$ and $\mu' : M' \to C_1$ be two subobjects of morphisms of C. Then:

 $\varepsilon \downarrow \mu'$ if and only if $\mu' \leq \mu$.

 $\varepsilon' \downarrow \mu$ if and only if $\varepsilon' \leq \varepsilon$.

If (ε, μ) and (ε', μ') are two internal factorisation systems on an internal category *C*, then:

 $\varepsilon' \leq \varepsilon$ if and only if $\mu \leq \mu'$.

If (ε, μ) and (ε', μ') are two internal factorisation systems on an internal category *C*, then:

 $\varepsilon' \leq \varepsilon$ if and only if $\mu \leq \mu'$.

We may thus define an order on the internal factorisation systems on an internal category C by:

 $(\varepsilon,\mu) \leq (\varepsilon',\mu')$ iff $\mu \leq \mu'$.

If (ε, μ) and (ε', μ') are two internal factorisation systems on an internal category *C*, then:

 $\varepsilon' \leq \varepsilon$ if and only if $\mu \leq \mu'$.

We may thus define an order on the internal factorisation systems on an internal category C by:

 $(\varepsilon, \mu) \leq (\varepsilon', \mu')$ iff $\mu \leq \mu'$.

Moreover, we have that:

```
\varepsilon \sim \varepsilon' if and only if \mu \sim \mu'.
```

A **Mal'tsev category** is a category for which every internal reflexive relation is an internal equivalence relation.

A **Mal'tsev category** is a category for which every internal reflexive relation is an internal equivalence relation.

Grp, **Ab**, **Vect**_K, **Heyt**, the dual of a topos, additive categories are Mal'tsev categories.

A **Mal'tsev category** is a category for which every internal reflexive relation is an internal equivalence relation.

Grp, **Ab**, **Vect**_K, **Heyt**, the dual of a topos, additive categories are Mal'tsev categories.

Every internal category in a Mal'tsev category is an internal groupoid.

A **Mal'tsev category** is a category for which every internal reflexive relation is an internal equivalence relation.

Grp, **Ab**, **Vect**_K, **Heyt**, the dual of a topos, additive categories are Mal'tsev categories.

Every internal category in a Mal'tsev category is an **internal groupoid**.

Every internal factorisation system on an internal groupoid is trivial, $(\sigma, 1_{C_1})$.

A **Mal'tsev category** is a category for which every internal reflexive relation is an internal equivalence relation.

Grp, **Ab**, **Vect**_K, **Heyt**, the dual of a topos, additive categories are Mal'tsev categories.

Every internal category in a Mal'tsev category is an **internal groupoid**.

Every internal factorisation system on an internal groupoid is trivial, $(\sigma, 1_{C_1})$.

 $[Brown-Spencer]\colon {\rm Cat}(Grp) \sim XMod,$ so we do not obtain factorisation systems for crossed modules

Schreier Internal Categories and Crossed Semimodules

A **Schreier internal category** in **Mon** is an internal category *C* which satisfies:

$$(\forall f \in C_1)(\exists! k \in \operatorname{Ker}(d)) f = k + ed(f)$$

Schreier Internal Categories and Crossed Semimodules

A **Schreier internal category** in **Mon** is an internal category *C* which satisfies:

$$(\forall f \in C_1)(\exists! k \in \operatorname{Ker}(d)) f = k + ed(f)$$

A crossed semimodule is a quadruple (A, B, α, f) where:

- A and B are monoids
- α is a (left) monoid action of B on A
- $f: A \rightarrow B$ is a monoid homomorphisms
- Satisfying, for all $a, a' \in A$ and $b \in B$:
 - f(ba) + b = b + f(a) (Equivariance)
 - 2 f(a)a' + a = a + a' (Peiffer Identity)

Schreier Internal Categories and Crossed Semimodules

A **Schreier internal category** in **Mon** is an internal category *C* which satisfies:

$$(\forall f \in C_1)(\exists! k \in \operatorname{Ker}(d)) f = k + ed(f)$$

A crossed semimodule is a quadruple (A, B, α, f) where:

- A and B are monoids
- α is a (left) monoid action of B on A
- $f: A \rightarrow B$ is a monoid homomorphisms
- Satisfying, for all $a, a' \in A$ and $b \in B$:
 - f(^ba) + b = b + f(a) (Equivariance)
 f^(a)a' + a = a + a' (Peiffer Identity)

[Patchkoria]: $SCat(Mon) \sim XSMod$

Schreier Internal Factorisation Systems

A subobject of morphisms $\alpha : A \to C_1$ of a Schreier internal category C in **Mon** is **Schreier** if for all $a \in A$, with $a = k_a + ed(a)$ for $k_a \in \text{Ker}(d)$, we have that $k_a \in A$.

Schreier Internal Factorisation Systems

A subobject of morphisms $\alpha : A \to C_1$ of a Schreier internal category C in **Mon** is **Schreier** if for all $a \in A$, with $a = k_a + ed(a)$ for $k_a \in \text{Ker}(d)$, we have that $k_a \in A$.

An internal factorisation system (ε , μ) on a Schreier internal category C in **Mon** is **Schreier** if ε and μ are Schreier.

Monoid Factorisation System

Let $\mathcal{X} = (X, +, 0)$ be a monoid, considered as a one object category. Let $(\mathcal{E}, \mathcal{M})$ be a (usual) factorisation system system on \mathcal{X} . Then:

- $\textcircled{0} \ \mathcal{E} \ \text{and} \ \mathcal{M} \ \text{are submonoids of} \ \mathcal{X}.$
- **2** \mathcal{E} and \mathcal{M} contain all invertible elements of \mathcal{X} .
- For all x, y ∈ X, e ∈ E, m ∈ M such that y + e = m + x, there exists a unique z ∈ X such that z + e = x and m + z = y
- **(**) For all $x \in \mathcal{X}$, there exists $e \in \mathcal{E}$ and $m \in \mathcal{M}$ such that x = m + e.

Schreier Internal Factorisation Systems

Schreier Internal Factorisation System Monoid Factorisation System on A, with ${\mathcal E}$ and ${\mathcal M}$ closed under α

Future work

Does an internal factorisation system provide a reasonable definition for a factorisation system for double categories, viewed as objects of Cat(Cat)?