Semilinear idempotent distributive ℓ-monoids

Simon Santschi

Mathematical Institute
University of Bern
TACL 2022

June 23, 2022

Motivation

Why are distributive ℓ-monoids interesting?

Motivation

Why are distributive ℓ-monoids interesting?

- Algebra: There is a deep connection between the variety of distributive ℓ-monoids and the variety of ℓ-groups (Colacito et al. 2022).

Motivation

Why are distributive ℓ-monoids interesting?

- Algebra: There is a deep connection between the variety of distributive ℓ-monoids and the variety of ℓ-groups (Colacito et al. 2022).
- Logic: For various classes of distributive residuated lattices the residual free reducts are distributive ℓ-monoids.

Motivation

Why are distributive ℓ-monoids interesting?

- Algebra: There is a deep connection between the variety of distributive ℓ-monoids and the variety of ℓ-groups (Colacito et al. 2022).
- Logic: For various classes of distributive residuated lattices the residual free reducts are distributive ℓ-monoids.

In this talk:

Motivation

Why are distributive ℓ-monoids interesting?

- Algebra: There is a deep connection between the variety of distributive ℓ-monoids and the variety of ℓ-groups (Colacito et al. 2022).
- Logic: For various classes of distributive residuated lattices the residual free reducts are distributive ℓ-monoids.

In this talk:

- Semilinear idempotent distributive ℓ-monoids.

Motivation

Why are distributive ℓ-monoids interesting?

- Algebra: There is a deep connection between the variety of distributive ℓ-monoids and the variety of ℓ-groups (Colacito et al. 2022).
- Logic: For various classes of distributive residuated lattices the residual free reducts are distributive ℓ-monoids.

In this talk:

- Semilinear idempotent distributive ℓ-monoids.
- A structure theorem for the finite subdirectly irreducibles.

Motivation

Why are distributive ℓ-monoids interesting?

- Algebra: There is a deep connection between the variety of distributive ℓ-monoids and the variety of ℓ-groups (Colacito et al. 2022).
- Logic: For various classes of distributive residuated lattices the residual free reducts are distributive ℓ-monoids.

In this talk:

- Semilinear idempotent distributive ℓ-monoids.
- A structure theorem for the finite subdirectly irreducibles.
- A description of the subvariety lattice and a proof that it is countably infinite.

Distributive ℓ-monoids

A distributive ℓ-monoid is an algebra $\langle M, \wedge, \vee, \cdot, e\rangle$ such that

- $\langle M, \wedge, \vee\rangle$ is a distributive lattice,
- $\langle M, \cdot, e\rangle$ is a monoid,
- for all $a, b, c, d \in M$

$$
a(b \wedge c) d=a b d \wedge a c d \quad \text { and } \quad a(b \vee c) d=a b d \vee a c d
$$

Distributive ℓ-monoids

A distributive ℓ-monoid is an algebra $\langle M, \wedge, \vee, \cdot, e\rangle$ such that

- $\langle M, \wedge, \vee\rangle$ is a distributive lattice,
- $\langle M, \cdot, e\rangle$ is a monoid,
- for all $a, b, c, d \in M$

$$
a(b \wedge c) d=a b d \wedge a c d \quad \text { and } \quad a(b \vee c) d=a b d \vee a c d
$$

We call a distributive ℓ-monoid \mathbf{M} idempotent or commutative if its monoid reduct is idempotent or commutative, respectively.

Distributive ℓ-monoids

A distributive ℓ-monoid is an algebra $\langle M, \wedge, \vee, \cdot, e\rangle$ such that

- $\langle M, \wedge, \vee\rangle$ is a distributive lattice,
- $\langle M, \cdot, e\rangle$ is a monoid,
- for all $a, b, c, d \in M$

$$
a(b \wedge c) d=a b d \wedge a c d \quad \text { and } \quad a(b \vee c) d=a b d \vee a c d
$$

We call a distributive ℓ-monoid \mathbf{M} idempotent or commutative if its monoid reduct is idempotent or commutative, respectively.
The class $\mathcal{D} \mathcal{L} \mathcal{M}$ of all distributive ℓ-monoids forms a variety (equational class). Similarly, the classes $\mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}$ and $\mathcal{C I} d \mathcal{D} \mathcal{L} \mathcal{M}$ of idempotent and commutative idempotent distributive ℓ-monoids are varieties.

Examples

Example

The inverse-free reduct of an ℓ-group is a distributive ℓ-monoid.

Examples

Example

The inverse-free reduct of an ℓ-group is a distributive ℓ-monoid.

Example

For a distributive lattice $\langle D, \wedge, \vee\rangle$ with top element $\mathrm{T} \in D$ the algebra $\langle D, \wedge, \vee, \wedge, \top\rangle$ is a commutative idempotent distributive ℓ-monoid.

Examples

Example

The inverse-free reduct of an ℓ-group is a distributive ℓ-monoid.

Example

For a distributive lattice $\langle D, \wedge, \vee\rangle$ with top element $\top \in D$ the algebra $\langle D, \wedge, \vee, \wedge, \top\rangle$ is a commutative idempotent distributive ℓ-monoid.

Example

A totally ordered monoid $\langle M, \cdot, e, \leq\rangle$, i.e., a monoid $\langle M, \cdot, e\rangle$ with a total order \leq on M such that $a \leq b$ implies $c a d \leq c b d$ for $a, b, c, d \in M$, can be considered as a distributive ℓ-monoid $\langle M, \min , \max , \cdot, e\rangle$ which we also call totally ordered monoid.

Semilinear distributive ℓ-monoids

- We call a distributive ℓ-monoid \mathbf{M} semilinear if it is a subdirect product of totally ordered monoids.

Semilinear distributive ℓ-monoids

- We call a distributive ℓ-monoid \mathbf{M} semilinear if it is a subdirect product of totally ordered monoids.
- The class $\mathcal{S e m I} d \mathcal{D} \mathcal{L} \mathcal{M}$ of semilinear idempotent distributive ℓ-monoids is a variety which is generated by the class of totally ordered idempotent monoids.

Semilinear distributive ℓ-monoids

- We call a distributive ℓ-monoid \mathbf{M} semilinear if it is a subdirect product of totally ordered monoids.
- The class $\operatorname{SemI} d \mathcal{D} \mathcal{L} \mathcal{M}$ of semilinear idempotent distributive ℓ-monoids is a variety which is generated by the class of totally ordered idempotent monoids.

Theorem (Merlier 1971)
Every commutative distributive ℓ-monoid is semilinear.

Semilinear distributive ℓ-monoids

- We call a distributive ℓ-monoid \mathbf{M} semilinear if it is a subdirect product of totally ordered monoids.
- The class $\mathcal{S e m I} d \mathcal{D} \mathcal{L} \mathcal{M}$ of semilinear idempotent distributive ℓ-monoids is a variety which is generated by the class of totally ordered idempotent monoids.

Theorem (Merlier 1971)

Every commutative distributive ℓ-monoid is semilinear.

Corollary

The variety $\mathcal{C I} d \mathcal{D} \mathcal{L} \mathcal{M}$ is the subvariety of $\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L} M$ consisting of the commutative members of $\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}$.

Local finiteness of $\mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}$

Recall that an algebra \mathbf{A} is called locally finite if every finitely generated subalgebra of \mathbf{A} is finite and a class \mathcal{K} of algebras is called locally finite if every member of \mathcal{K} is locally finite.

Local finiteness of $\mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}$

Recall that an algebra \mathbf{A} is called locally finite if every finitely generated subalgebra of \mathbf{A} is finite and a class \mathcal{K} of algebras is called locally finite if every member of \mathcal{K} is locally finite.

Theorem (Green, Rees 1952)

The variety of idempotent monoids is locally finite.

Local finiteness of $\mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}$

Recall that an algebra \mathbf{A} is called locally finite if every finitely generated subalgebra of \mathbf{A} is finite and a class \mathcal{K} of algebras is called locally finite if every member of \mathcal{K} is locally finite.

Theorem (Green, Rees 1952)

The variety of idempotent monoids is locally finite.

Using this fact we can show:

Proposition

The variety $\mathcal{I} d \mathcal{D} \mathcal{L} M$ of idempotent distributive ℓ-monoids is locally finite.

Local finiteness of $\mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}$

Recall that an algebra \mathbf{A} is called locally finite if every finitely generated subalgebra of \mathbf{A} is finite and a class \mathcal{K} of algebras is called locally finite if every member of \mathcal{K} is locally finite.

Theorem (Green, Rees 1952)

The variety of idempotent monoids is locally finite.

Using this fact we can show:

Proposition

The variety $\mathcal{I} d \mathcal{D} \mathcal{L} M$ of idempotent distributive ℓ-monoids is locally finite.

Corollary
 Sem $d \mathcal{D} \mathcal{L} \mathcal{M}$ is locally finite and generated by the class of finite subdirectly irreducible totally ordered idempotent monoids.

Examples

The totally ordered idempotent monoids $\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathrm{G}_{3}$, and D_{3} described below are exactly the simple totally ordered idempotent monoids:

Examples

The totally ordered idempotent monoids $\mathrm{C}_{2}, \mathrm{C}_{2}^{\partial}, \mathrm{G}_{3}$, and D_{3} described below are exactly the simple totally ordered idempotent monoids:

$$
\mathbf{C}_{2}=\langle\{\perp, e\}, \cdot, e, \leq\rangle
$$

\cdot	e	\perp
e	e	\perp
\perp	\perp	\perp

Examples

The totally ordered idempotent monoids $\mathrm{C}_{2}, \mathrm{C}_{2}^{\partial}, \mathrm{G}_{3}$, and D_{3} described below are exactly the simple totally ordered idempotent monoids:

$$
\mathbf{C}_{2}=\langle\{\perp, e\}, \cdot, e, \leq\rangle
$$

$$
\mathbf{C}_{2}^{\partial}=\langle\{e, \top\}, \cdot, e, \leq\rangle
$$

Examples

The totally ordered idempotent monoids $\mathrm{C}_{2}, \mathrm{C}_{2}^{\partial}, \mathrm{G}_{3}$, and D_{3} described below are exactly the simple totally ordered idempotent monoids:

$$
\mathbf{C}_{2}=\langle\{\perp, e\}, \cdot, e, \leq\rangle
$$

$$
\mathbf{C}_{2}^{\partial}=\langle\{e, \top\}, \cdot, e, \leq\rangle
$$

$\mathbf{G}_{3}=\langle\{\perp, e, \top\}, \cdot, e, \leq\rangle$

\cdot	e	\perp	\top
e	e	\perp	\top
\perp	\perp	\perp	\perp
\top	\top	\top	\top

Examples

The totally ordered idempotent monoids $\mathrm{C}_{2}, \mathrm{C}_{2}^{\partial}, \mathrm{G}_{3}$, and D_{3} described below are exactly the simple totally ordered idempotent monoids:

$$
\mathbf{C}_{2}=\langle\{\perp, e\}, \cdot, e, \leq\rangle
$$

$\mathbf{G}_{3}=\langle\{\perp, e, \top\}, \cdot, e, \leq\rangle$

$$
\mathbf{C}_{2}^{\partial}=\langle\{e, \top\}, \cdot, e, \leq\rangle
$$

$\mathbf{D}_{3}=\langle\{\perp, e, \top\}, \cdot, e, \leq\rangle$

Combining totally ordered idempotent monoids

G_{3}

The e-sum construction

The e-sum (also known as nested sum or $\mathbf{K}[\mathbf{L}]$ in (Galatos 2004)) was used in (Olson 2012) to study the subvariety lattice of the variety of semilinear idempotent residuated lattices.

The e-sum construction

The e-sum (also known as nested sum or $\mathbf{K}[\mathbf{L}]$ in (Galatos 2004)) was used in (Olson 2012) to study the subvariety lattice of the variety of semilinear idempotent residuated lattices.

Let \mathbf{L} and \mathbf{M} be totally ordered idempotent monoids, where we relabel the elements such that $L \cap M=\{e\}$. The e-sum of \mathbf{L} and \mathbf{M} is defined by $\mathbf{L} \oplus \mathbf{M}=\langle L \cup M, \cdot, e \leq\rangle$, where

The e-sum construction

The e-sum (also known as nested sum or $\mathbf{K}[\mathbf{L}]$ in (Galatos 2004)) was used in (Olson 2012) to study the subvariety lattice of the variety of semilinear idempotent residuated lattices.
Let \mathbf{L} and \mathbf{M} be totally ordered idempotent monoids, where we relabel the elements such that $L \cap M=\{e\}$. The e-sum of \mathbf{L} and \mathbf{M} is defined by $\mathbf{L} \oplus \mathbf{M}=\langle L \cup M, \cdot, e \leq\rangle$, where

- the product . is the extension of the monoid operations on \mathbf{L} and \mathbf{M} with $a \cdot b=b \cdot a=a$ for all $a \in L \backslash\{e\}$ and $b \in M$,

The e-sum construction

The e-sum (also known as nested sum or $\mathbf{K}[\mathbf{L}]$ in (Galatos 2004)) was used in (Olson 2012) to study the subvariety lattice of the variety of semilinear idempotent residuated lattices.

Let \mathbf{L} and \mathbf{M} be totally ordered idempotent monoids, where we relabel the elements such that $L \cap M=\{e\}$. The e-sum of \mathbf{L} and \mathbf{M} is defined by $\mathbf{L} \oplus \mathbf{M}=\langle L \cup M, \cdot, e \leq\rangle$, where

- the product . is the extension of the monoid operations on \mathbf{L} and \mathbf{M} with $a \cdot b=b \cdot a=a$ for all $a \in L \backslash\{e\}$ and $b \in M$,
- \leq is the least extension of the orders of \mathbf{L} and \mathbf{M} that satisfies for all $a \in L \backslash\{e\}$ and $b \in M$ that $a \leq b$ if $a \leq_{\mathbf{L}} e$ and $b \leq a$ if $e \leq_{\mathbf{L}} a$.

The e-sum construction

The e-sum (also known as nested sum or $\mathbf{K}[\mathbf{L}]$ in (Galatos 2004)) was used in (Olson 2012) to study the subvariety lattice of the variety of semilinear idempotent residuated lattices.

Let \mathbf{L} and \mathbf{M} be totally ordered idempotent monoids, where we relabel the elements such that $L \cap M=\{e\}$. The e-sum of \mathbf{L} and \mathbf{M} is defined by $\mathbf{L} \oplus \mathbf{M}=\langle L \cup M, \cdot, e \leq\rangle$, where

- the product . is the extension of the monoid operations on \mathbf{L} and \mathbf{M} with $a \cdot b=b \cdot a=a$ for all $a \in L \backslash\{e\}$ and $b \in M$,
- \leq is the least extension of the orders of \mathbf{L} and \mathbf{M} that satisfies for all $a \in L \backslash\{e\}$ and $b \in M$ that $a \leq b$ if $a \leq_{\mathbf{L}} e$ and $b \leq a$ if $e \leq_{\mathbf{L}} a$.

Intuition: $\mathbf{L} \oplus \mathbf{M}$ is obtained by replacing the identity e in \mathbf{L} with \mathbf{M} and extending the order and product in such a way that the elements of \mathbf{M} behave like e with respect to elements of \mathbf{L}.

Properties of the e-sum

Lemma (cf. Olson 2012)
Let \mathbf{L} and \mathbf{M} be totally ordered idempotent monoids. Then $\mathbf{L} \oplus \mathbf{M}$ is an totally ordered idempotent monoid. Moreover, \mathbf{L} and \mathbf{M} embed into $\mathbf{L} \oplus \mathbf{M}$ via the inclusion maps.

Properties of the e-sum

Lemma (cf. Olson 2012)

Let \mathbf{L} and \mathbf{M} be totally ordered idempotent monoids. Then $\mathbf{L} \oplus \mathbf{M}$ is an totally ordered idempotent monoid. Moreover, \mathbf{L} and \mathbf{M} embed into $\mathbf{L} \oplus \mathbf{M}$ via the inclusion maps.

Lemma (Olson 2012)
Let \mathbf{L}, \mathbf{M}, and \mathbf{N} be totally ordered idempotent monoids. Then

$$
\mathbf{L} \oplus(\mathbf{M} \oplus \mathbf{N}) \cong(\mathbf{L} \oplus \mathbf{M}) \oplus \mathbf{N}
$$

Properties of the e-sum

Lemma (cf. Olson 2012)

Let \mathbf{L} and \mathbf{M} be totally ordered idempotent monoids. Then $\mathbf{L} \oplus \mathbf{M}$ is an totally ordered idempotent monoid. Moreover, \mathbf{L} and \mathbf{M} embed into $\mathbf{L} \oplus \mathbf{M}$ via the inclusion maps.

Lemma (Olson 2012)
Let \mathbf{L}, \mathbf{M}, and \mathbf{N} be totally ordered idempotent monoids. Then

$$
\mathbf{L} \oplus(\mathbf{M} \oplus \mathbf{N}) \cong(\mathbf{L} \oplus \mathbf{M}) \oplus \mathbf{N} .
$$

So it makes sense to write $\mathbf{M}_{1} \oplus \cdots \oplus \mathbf{M}_{n}$ for totally ordered idempotent monoids $\mathbf{M}_{1}, \ldots, \mathbf{M}_{n}$ or shorter $\bigoplus_{i=1}^{n} \mathbf{M}_{i}$, where $\bigoplus_{i=1}^{0} \mathbf{M}_{i}=\mathbf{0}$ for some fixed trivial algebra $\mathbf{0}$. We note that $\mathbf{M} \oplus \mathbf{0} \cong \mathbf{0} \oplus \mathbf{M} \cong \mathbf{M}$ for all \mathbf{M}, i.e., $\mathbf{0}$ is the neutral element of the e-sum operation.

Back to the Examples

The totally ordered idempotent monoids $\mathrm{C}_{2}, \mathrm{C}_{2}^{\partial}, \mathrm{G}_{3}$, and D_{3} are indecomposable with respect to the e-sum:

$$
\mathbf{C}_{2}=\langle\{\perp, e\}, \cdot, e, \leq\rangle
$$

$\mathbf{G}_{3}=\langle\{\perp, e, \top\}, \cdot, e, \leq\rangle$

$\mathbf{C}_{2}^{\partial}=\langle\{e, \top\}, \cdot, e, \leq\rangle$

$$
\mathbf{D}_{3}=\langle\{\perp, e, \top\}, \cdot, e, \leq\rangle
$$

The e-sum decomposition

Theorem

Every finite totally ordered idempotent monoid \mathbf{M} is isomorphic to an e-sum $\bigoplus_{i=1}^{n} \mathbf{M}_{i}$ with $\mathbf{M}_{i} \in\left\{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}\right\}$. Moreover, this e-sum is unique with respect to the algebras $\left\{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}\right\}$.

The e-sum decomposition

Theorem

Every finite totally ordered idempotent monoid \mathbf{M} is isomorphic to an e-sum $\bigoplus_{i=1}^{n} \mathbf{M}_{i}$ with $\mathbf{M}_{i} \in\left\{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}\right\}$. Moreover, this e-sum is unique with respect to the algebras $\left\{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}\right\}$.

Corollary (cf. Gil-Férez, Jipsen, Metcalfe 2020)

The number $\mathbf{I}(n)$ of totally ordered idempotent monoids with $n \in \mathbb{N} \backslash\{0\}$ elements (up to isomorphism) is recursively defined by $\mathbf{I}(1)=1, \mathbf{I}(2)=2$, and

$$
\mathbf{I}(n)=2 \cdot \mathbf{I}(n-1)+2 \cdot \mathbf{I}(n-2) \quad(n>2)
$$

Moreover,

$$
\mathbf{I}(n)=\frac{(1+\sqrt{3})^{n}-(1-\sqrt{3})^{n}}{2 \sqrt{3}}
$$

Finite subdirectly irreducibles of $\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}$

Theorem

Let \mathbf{M} be a non-trivial finite semilinear idempotent distributive ℓ-monoid. Then the following are equivalent:
(1) \mathbf{M} is subdirectly irreducible.
(2) $\mathbf{M} \cong \bigoplus_{i=1}^{n} \mathbf{M}_{i}$ for some $n \in \mathbb{N} \backslash\{0\}$ with $\mathbf{M}_{i} \in\left\{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}\right\}$ such that if $\mathbf{M}_{i}=\mathbf{M}_{i+1}$, then $\mathbf{M}_{i} \in\left\{\mathbf{G}_{3}, \mathbf{D}_{3}\right\}$ for every $i \in\{1, \ldots, n-1\}$.
(3) $\operatorname{Con}(\mathbf{M})$ is a chain.

Finite subdirectly irreducibles of $\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}$

Theorem

Let \mathbf{M} be a non-trivial finite semilinear idempotent distributive ℓ-monoid. Then the following are equivalent:
(1) \mathbf{M} is subdirectly irreducible.
(2) $\mathbf{M} \cong \bigoplus_{i=1}^{n} \mathbf{M}_{i}$ for some $n \in \mathbb{N} \backslash\{0\}$ with $\mathbf{M}_{i} \in\left\{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}\right\}$ such that if $\mathbf{M}_{i}=\mathbf{M}_{i+1}$, then $\mathbf{M}_{i} \in\left\{\mathbf{G}_{3}, \mathbf{D}_{3}\right\}$ for every $i \in\{1, \ldots, n-1\}$.
(3) $\operatorname{Con}(\mathbf{M})$ is a chain.

Corollary

The number $\mathbf{S}(n)$ of subdirectly irreducible totally ordered idempotent monoids with $n \in \mathbb{N} \backslash\{0\}$ elements (up to isomorphism) is recursively defined by $\mathbf{S}(1)=1, \mathbf{S}(2)=2, \mathbf{S}(3)=4$, and

$$
\mathbf{S}(n)=\mathbf{S}(n-1)+2 \mathbf{S}(n-2)+2 \mathbf{S}(n-3) \quad(n>3)
$$

Ilustration of the irreducibility condition

$\mathbf{M}_{1} \oplus \cdots \oplus \mathbf{C}_{2}^{\partial} \oplus \mathbf{C}_{2}^{\partial} \oplus \cdots \oplus \mathbf{M}_{n}$

Ilustration of the irreducibility condition

$\mathbf{M}_{1} \oplus \cdots \oplus \mathbf{C}_{2}^{\partial} \oplus \mathbf{C}_{2}^{\partial} \oplus \cdots \oplus \mathbf{M}_{n}$

Ilustration of the irreducibility condition

$$
\mathbf{M}_{1} \oplus \cdots \oplus \mathbf{C}_{2}^{\partial} \oplus \cdots \oplus \mathbf{M}_{n}
$$

Ilustration of the irreducibility condition

$\mathbf{M}_{1} \oplus \cdots \oplus \mathbf{C}_{2}^{\partial} \oplus \mathbf{C}_{2}^{\partial} \oplus \cdots \oplus \mathbf{M}_{n}$

Ilustration of the irreducibility condition

$\mathbf{M}_{1} \oplus \cdots \oplus \mathbf{C}_{2}^{\partial} \oplus \mathbf{C}_{2}^{\partial} \oplus \cdots \oplus \mathbf{M}_{n}$

Ilustration of the irreducibility condition

- T
- b
- e
- \perp
$\mathbf{M}_{1} \oplus \cdots \oplus \mathbf{C}_{2}^{\partial} \oplus \mathbf{C}_{2}^{\partial} \oplus \cdots \oplus \mathbf{M}_{n-1}$

Describing the subvariety lattice

Goal: Describe the subvariety lattice of $\operatorname{Sem\mathcal {I}} d \mathcal{D} \mathcal{L} \mathcal{M}$.

Describing the subvariety lattice

Goal: Describe the subvariety lattice of $\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L M}$.

- A relation \leq on a set P is called a quasi-order if it is reflexive and transitive. It is called a well quasi-order if it contains neither an infinite antichain nor an infinite descending chain.

Describing the subvariety lattice

Goal: Describe the subvariety lattice of $\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}$.

- A relation \leq on a set P is called a quasi-order if it is reflexive and transitive. It is called a well quasi-order if it contains neither an infinite antichain nor an infinite descending chain.
- For algebras \mathbf{A} and \mathbf{B} we define the relation $\leq_{H S}\left(\leq_{I S}\right)$ by

$$
\mathbf{A} \leq_{H S} \mathbf{B} \text { iff } \mathbf{A} \in H S(\{\mathbf{B}\})\left(\mathbf{A} \leq_{I S} \mathbf{B} \text { iff } \mathbf{A} \in I S(\{\mathbf{B}\})\right)
$$

where H, S, and I denote the closure under homomorphic images, subalgebras and ismorphic images.

Describing the subvariety lattice

Goal: Describe the subvariety lattice of $\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}$.

- A relation \leq on a set P is called a quasi-order if it is reflexive and transitive. It is called a well quasi-order if it contains neither an infinite antichain nor an infinite descending chain.
- For algebras \mathbf{A} and \mathbf{B} we define the relation $\leq_{H S}\left(\leq_{I S}\right)$ by

$$
\mathbf{A} \leq_{H S} \mathbf{B} \text { iff } \mathbf{A} \in H S(\{\mathbf{B}\})\left(\mathbf{A} \leq_{I S} \mathbf{B} \text { iff } \mathbf{A} \in I S(\{\mathbf{B}\})\right)
$$

where H, S, and I denote the closure under homomorphic images, subalgebras and ismorphic images.

- For a variety \mathcal{V} of finite type we denote by \mathcal{V}_{*} a fixed set which contains (up to isomorphism) exactly one copy of each finite subdirectly irreducible of \mathcal{V}. Then $\left\langle\mathcal{V}_{*}, \leq_{H S}\right\rangle$ and $\left\langle\mathcal{V}_{*}, \leq_{I S}\right\rangle$ are partially ordered sets.

A theorem about subvariety lattices

Theorem (Davey 1979)

Let \mathcal{V} be a congruence-distributive, locally finite variety of finite type. Then the subvariety lattice of \mathcal{V} is completely distributive and is isomorphic to the lattice of order ideals of the poset $\left\langle\mathcal{V}_{*}, \leq_{H S}\right\rangle$.

A theorem about subvariety lattices

Theorem (Davey 1979)

Let \mathcal{V} be a congruence-distributive, locally finite variety of finite type. Then the subvariety lattice of \mathcal{V} is completely distributive and is isomorphic to the lattice of order ideals of the poset $\left\langle\mathcal{V}_{*}, \leq_{H S}\right\rangle$.

Corollary (Olson 2012)

For a a congruence-distributive, locally finite variety \mathcal{V} of finite type the subvariety lattice of \mathcal{V} is countable iff $\left\langle\mathcal{V}_{*}, \leq_{H S}\right\rangle$ is a well quasi-ordered set.

The order $\leq_{H S}$ on $\operatorname{Sem\mathcal {I}} d \mathcal{D} \mathcal{L} \mathcal{M}_{*}$

We fix $\operatorname{Sem\mathcal {I}} d \mathcal{D} \mathcal{L} \mathcal{M}_{*}$ to be the set of finite subdirectly irreducibles of $\mathcal{S e m} \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}$ that are e-sums of the algebras $\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}$.

The order $\leq_{H S}$ on $\operatorname{Sem\mathcal {I}} d \mathcal{D} \mathcal{L} \mathcal{M}_{*}$

We fix $\operatorname{Sem\mathcal {I}} d \mathcal{D} \mathcal{L} \mathcal{M}_{*}$ to be the set of finite subdirectly irreducibles of $\mathcal{S e m} \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}$ that are e-sums of the algebras $\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}$.
As $\operatorname{SemI} \mathcal{I} \mathcal{D} \mathcal{L} \mathcal{M}$ is congruence-distributive and locally finite, our goal is to show that $\left\langle\mathcal{S e m} \mathcal{I} d \mathcal{D} \mathcal{L} M_{*}, \leq_{H S}\right\rangle$ is a well quasi-ordered set.

The order $\leq_{H S}$ on $\operatorname{Sem\mathcal {I}} d \mathcal{D} \mathcal{L} \mathcal{M}_{*}$

We fix $\operatorname{Sem\mathcal {I}} d \mathcal{D} \mathcal{L} \mathcal{M}_{*}$ to be the set of finite subdirectly irreducibles of $\mathcal{S e m \mathcal { I }} d \mathcal{D} \mathcal{L} \mathcal{M}$ that are e-sums of the algebras $\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}$.
As $\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L M}$ is congruence-distributive and locally finite, our goal is to show that $\left\langle\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}_{*}, \leq_{H S}\right\rangle$ is a well quasi-ordered set.

Lemma

Every homomorphic image of an totally ordered idempotent monoid \mathbf{M} is isomorphic to a subalgebra of \mathbf{M}.

The order $\leq_{H S}$ on $\operatorname{Sem\mathcal {I}} d \mathcal{D} \mathcal{L} \mathcal{M}_{*}$

We fix $\operatorname{Sem\mathcal {I}} d \mathcal{D} \mathcal{L} \mathcal{M}_{*}$ to be the set of finite subdirectly irreducibles of $\mathcal{S e m} \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}$ that are e-sums of the algebras $\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}$.
As $\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L M}$ is congruence-distributive and locally finite, our goal is to show that $\left\langle\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}_{*}, \leq_{H S}\right\rangle$ is a well quasi-ordered set.

Lemma

Every homomorphic image of an totally ordered idempotent monoid \mathbf{M} is isomorphic to a subalgebra of \mathbf{M}.

So it suffices to show that $\left\langle\mathcal{S e m \mathcal { I }} d \mathcal{D} \mathcal{L} \mathcal{M}_{*}, \leq_{I S}\right\rangle$ is a well quasi-ordered set.

Higman's Lemma

For a quasi-ordered set $\langle P, \leq\rangle$ we define the order \leq^{*} on the set $\sigma(P)$ of finite sequences of P by
$\left\langle p_{1}, \ldots, p_{n}\right\rangle \leq^{*}\left\langle q_{1}, \ldots, q_{m}\right\rangle: \Longleftrightarrow$ there exists an order embedding
$f:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}$ such that
$p_{i} \leq q_{f(i)}$ for all $i \in\{1, \ldots, n\}$.

Higman's Lemma

For a quasi-ordered set $\langle P, \leq\rangle$ we define the order \leq^{*} on the set $\sigma(P)$ of finite sequences of P by
$\left\langle p_{1}, \ldots, p_{n}\right\rangle \leq^{*}\left\langle q_{1}, \ldots, q_{m}\right\rangle: \Longleftrightarrow$ there exists an order embedding $f:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}$ such that $p_{i} \leq q_{f(i)}$ for all $i \in\{1, \ldots, n\}$.

Lemma (Higman 1952)
If $\langle P, \leq\rangle$ is a well quasi-ordered set, then so is $\left\langle\sigma(P), \leq^{*}\right\rangle$.

The order $\leq_{I S}$ restricted to $\left\{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}\right\}$

The order $\leq_{I S}$ restricts to the following well quasi-order on the set $\left\{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}\right\}$.

The order $\leq_{I S}$ restricted to $\left\{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}\right\}$

The order $\leq_{I S}$ restricts to the following well quasi-order on the set $\left\{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}\right\}$.

We define for $\mathbf{L}, \mathbf{M} \in \mathcal{S e m \mathcal { I }} d \mathcal{D} \mathcal{L} \mathcal{M}_{*}$ the relation \preceq by

$$
\mathbf{L} \preceq \mathbf{M}: \Longleftrightarrow\left\langle\mathbf{L}_{1}, \ldots, \mathbf{L}_{m}\right\rangle \leq_{I S}^{*}\left\langle\mathbf{M}_{1}, \ldots, \mathbf{M}_{n}\right\rangle,
$$

for $\mathbf{L}=\mathbf{L}_{1} \oplus \cdots \oplus \mathbf{L}_{m}, \mathbf{M}=\mathbf{M}_{1} \oplus \cdots \oplus \mathbf{M}_{n}$ with
$\mathbf{M}_{i}, \mathbf{L}_{j} \in\left\{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}\right\}$.

The subvariety lattice of $\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}$

Using Higman's Lemma and the fact that the restriction of a well quasi-order to a subset is again a well quasi-order, we obtain:

Corollary

$\left\langle\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L} M_{*}, \preceq\right\rangle$ is a well quasi-ordered set.

The subvariety lattice of $\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}$

Using Higman's Lemma and the fact that the restriction of a well quasi-order to a subset is again a well quasi-order, we obtain:

Corollary

$\left\langle\operatorname{Sem} \operatorname{I} d \mathcal{D} \mathcal{L} M_{*}, \preceq\right\rangle$ is a well quasi-ordered set.
Considering how embeddings behave we can show:

Lemma

For all $\mathbf{L}, \mathbf{M} \in \mathcal{S e m} \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}_{*}$ we have $\mathbf{L} \preceq \mathbf{M}$ if and only if $\mathbf{L} \leq_{I S} \mathbf{M}$.

The subvariety lattice of $\operatorname{Sem\mathcal {I}} d \mathcal{D} \mathcal{L} \mathcal{M}$

Using Higman's Lemma and the fact that the restriction of a well quasi-order to a subset is again a well quasi-order, we obtain:

```
Corollary
<Sem\mathcal{I}d\mathcal{DLM}}\mp@subsup{\mathcal{*}}{*}{\Omega}\preceq\rangle is a well quasi-ordered set
```

Considering how embeddings behave we can show:

```
Lemma
For all L,MM Sem\mathcal{I}d\mathcal{D}\mathcal{L}\mp@subsup{\mathcal{M}}{*}{*}\mathrm{ we have }\mathbf{L}\preceq\mathbf{M}\mathrm{ if and only if }\mathbf{L}\leq\mp@subsup{}{IS}{}\mathbf{M}.
```

Thus we get that $\left\langle\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}_{*}, \leq_{I S}\right\rangle$ is a well quasi-ordered set, yielding

Theorem

The subvariety lattice of $\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L M}$ is countably infinite.

A description of the subvariety lattice of $\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}$

- Using the theorem of (Davey 1979) and the fact that $\leq_{H S}=\preceq$ we
 lattice of order-ideals of $\left\langle\mathcal{S e m \mathcal { I }} d \mathcal{D} \mathcal{L} \mathcal{M}_{*}, \preceq\right\rangle$, via the map that maps an order ideal \mathcal{I} to the variety $V(\mathcal{I})$ generated by \mathcal{I}.

A description of the subvariety lattice of $\operatorname{Sem\mathcal {I}} d \mathcal{D} \mathcal{L} \mathcal{M}$

- Using the theorem of (Davey 1979) and the fact that $\leq_{H S}=\preceq$ we get that the subvariety lattice of $\operatorname{Sem} \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}$ is isomorphic to the lattice of order-ideals of $\left\langle\mathcal{S e m \mathcal { I }} d \mathcal{D} \mathcal{L} \mathcal{M}_{*}, \preceq\right\rangle$, via the map that maps an order ideal \mathcal{I} to the variety $V(\mathcal{I})$ generated by \mathcal{I}.
- Thus, by the characterization of the finite subdirectly irreducibles and the definition of \preceq via the Higman order, we get a description of the subvariety lattice of $\operatorname{Sem\mathcal {I}} d \mathcal{D} \mathcal{L} \mathcal{M}$.

The commutative case

For $\mathcal{C I} d \mathcal{D} \mathcal{L} \mathcal{M}$ the previous theorems yield the following immediate results:

Proposition

Let \mathbf{M} be a finite commutative totally ordered idempotent monoid. Then $\mathbf{M} \cong \bigoplus_{i=1}^{n} \mathbf{M}_{i}$ with $\mathbf{M}_{i} \in\left\{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}\right\}$. Moreover \mathbf{M} is subdirectly irreducible if and only if for all $i \in\{1, \ldots, n-1\}, \mathbf{M}_{i} \neq \mathbf{M}_{i+1}$.

The commutative case

For $\mathcal{C I} d \mathcal{D} \mathcal{L}$ the previous theorems yield the following immediate results:

Proposition

Let M be a finite commutative totally ordered idempotent monoid. Then $\mathbf{M} \cong \bigoplus_{i=1}^{n} \mathbf{M}_{i}$ with $\mathbf{M}_{i} \in\left\{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}\right\}$. Moreover \mathbf{M} is subdirectly irreducible if and only if for all $i \in\{1, \ldots, n-1\}, \mathbf{M}_{i} \neq \mathbf{M}_{i+1}$.

Corollary

There are up to isomorphism 2^{n-1} totally ordered commutative idempotent monoids of size $n \geq 1$.

Subdirectly irreducibles of $\mathcal{C I} d \mathcal{D} \mathcal{L M}$

For $n>2$ we define inductively the algebras \mathbf{C}_{n} and $\mathbf{C}_{n}^{\partial}$ by

$$
\begin{aligned}
& \mathbf{C}_{n}:=\mathbf{C}_{2} \oplus \mathbf{C}_{n-1}^{\partial} \\
& \mathbf{C}_{n}^{\partial}:=\mathbf{C}_{2}^{\partial} \oplus \mathbf{C}_{n-1}
\end{aligned}
$$

and we set $\mathbf{C}_{1}=\mathbf{C}_{1}^{\partial}=\mathbf{0}$.

Subdirectly irreducibles of $\mathcal{C} \mathcal{I} d \mathcal{D} \mathcal{L M}$

For $n>2$ we define inductively the algebras \mathbf{C}_{n} and $\mathbf{C}_{n}^{\partial}$ by

$$
\begin{aligned}
& \mathbf{C}_{n}:=\mathbf{C}_{2} \oplus \mathbf{C}_{n-1}^{\partial} \\
& \mathbf{C}_{n}^{\partial}:=\mathbf{C}_{2}^{\partial} \oplus \mathbf{C}_{n-1}
\end{aligned}
$$

and we set $\mathbf{C}_{1}=\mathbf{C}_{1}^{\partial}=\mathbf{0}$.

Remark

The algebras \mathbf{C}_{n} are exactly the reducts of the finite Sugihara chains.

Subdirectly irreducibles of $\mathcal{C} \mathcal{I} d \mathcal{D} \mathcal{L M}$

For $n>2$ we define inductively the algebras \mathbf{C}_{n} and $\mathbf{C}_{n}^{\partial}$ by

$$
\begin{aligned}
& \mathbf{C}_{n}:=\mathbf{C}_{2} \oplus \mathbf{C}_{n-1}^{\partial} \\
& \mathbf{C}_{n}^{\partial}:=\mathbf{C}_{2}^{\partial} \oplus \mathbf{C}_{n-1}
\end{aligned}
$$

and we set $\mathbf{C}_{1}=\mathbf{C}_{1}^{\partial}=\mathbf{0}$.

Remark

The algebras \mathbf{C}_{n} are exactly the reducts of the finite Sugihara chains.

Proposition

For every $n>1$ the algebras \mathbf{C}_{n} and $\mathbf{C}_{n}^{\partial}$ are up to isomorphism the only subdirectly irreducible totally ordered commutative idempotent monoids with n elements.

Example \mathbf{C}_{3} and $\mathbf{C}_{3}^{\partial}$

The subvariety lattice of $\mathcal{C I} d \mathcal{D} \mathcal{L} \mathcal{M}$

Theorem

The subvariety lattice of $\mathcal{C I} d \mathcal{D} \mathcal{L M}$ is of the form:

$\mathcal{C I} d \mathcal{D} \mathcal{L M}$

Thank you!

Thank you!

References I

[1] Almudena Colacito, Nikolaos Galatos, George Metcalfe, and Simon Santschi. From distributive ℓ-monoids to ℓ-groups, and back again. J. Algebra 601 (2022), 129-148.
[2] Brian A. Davey. On the lattice of subvarieties. Houston J. Math. 5 (1979), 183-192.
[3] Nikolaos Galatos. Minimal varieties of residuated lattices. Algebra Universalis 52.2-3 (2004), 215-239.
[4] José Gil-Férez, Peter Jipsen, and George Metcalfe. Structure theorems for idempotent residuated lattices. Algebra Universalis 81.2 (2020), 25.
[5] J. A. Green and D. Rees. On semi-groups in which $x^{r}=x$. Proc. Camb. Philos. Soc. 48.1 (1952), 35-40.
[6] Graham Higman. Ordering by Divisibility in Abstract Algebras. Proc. Lond. Math. Soc. s3-2.1 (1952), 326-336.

References II

[7] Thérèse Merlier. Sur les demi-groupes réticulés et les o-demi-groupes. Semigroup Forum 2.1 (1971), 64-70.
[8] Jeffrey S Olson. The subvariety lattice for representable idempotent commutative residuated lattices. Algebra Universalis 67.1 (2012), 43-58.

