Semilinear idempotent distributive *l*-monoids

Simon Santschi

Mathematical Institute University of Bern

TACL 2022

June 23, 2022

Why are distributive ℓ -monoids interesting?

Why are distributive ℓ -monoids interesting?

 Algebra: There is a deep connection between the variety of distributive ℓ-monoids and the variety of ℓ-groups (Colacito et al. 2022).

Why are distributive ℓ -monoids interesting?

- Algebra: There is a deep connection between the variety of distributive ℓ-monoids and the variety of ℓ-groups (Colacito et al. 2022).
- Logic: For various classes of distributive residuated lattices the residual free reducts are distributive *l*-monoids.

Why are distributive ℓ -monoids interesting?

- Algebra: There is a deep connection between the variety of distributive ℓ-monoids and the variety of ℓ-groups (Colacito et al. 2022).
- Logic: For various classes of distributive residuated lattices the residual free reducts are distributive *l*-monoids.

In this talk:

Why are distributive ℓ -monoids interesting?

- Algebra: There is a deep connection between the variety of distributive ℓ-monoids and the variety of ℓ-groups (Colacito et al. 2022).
- Logic: For various classes of distributive residuated lattices the residual free reducts are distributive *l*-monoids.

In this talk:

• Semilinear idempotent distributive *l*-monoids.

Why are distributive ℓ -monoids interesting?

- Algebra: There is a deep connection between the variety of distributive ℓ-monoids and the variety of ℓ-groups (Colacito et al. 2022).
- Logic: For various classes of distributive residuated lattices the residual free reducts are distributive *l*-monoids.

In this talk:

- Semilinear idempotent distributive *l*-monoids.
- A structure theorem for the finite subdirectly irreducibles.

Why are distributive ℓ -monoids interesting?

- Algebra: There is a deep connection between the variety of distributive ℓ-monoids and the variety of ℓ-groups (Colacito et al. 2022).
- Logic: For various classes of distributive residuated lattices the residual free reducts are distributive *l*-monoids.

In this talk:

- Semilinear idempotent distributive ℓ -monoids.
- A structure theorem for the finite subdirectly irreducibles.
- A description of the subvariety lattice and a proof that it is countably infinite.

Distributive ℓ -monoids

A distributive ℓ -monoid is an algebra $\langle M, \wedge, \vee, \cdot, e \rangle$ such that

- $\langle M, \wedge, \vee \rangle$ is a distributive lattice,
- $\langle M, \cdot, e \rangle$ is a monoid,
- for all $a, b, c, d \in M$

 $a(b \wedge c)d = abd \wedge acd$ and $a(b \vee c)d = abd \vee acd$.

A distributive ℓ -monoid is an algebra $\langle M, \wedge, \vee, \cdot, e \rangle$ such that

- $\langle M, \wedge, \vee \rangle$ is a distributive lattice,
- $\langle M, \cdot, e \rangle$ is a monoid,
- for all $a, b, c, d \in M$

 $a(b \wedge c)d = abd \wedge acd$ and $a(b \vee c)d = abd \vee acd$.

We call a distributive ℓ -monoid **M** idempotent or commutative if its monoid reduct is idempotent or commutative, respectively.

A distributive ℓ -monoid is an algebra $\langle M, \wedge, \vee, \cdot, e \rangle$ such that

- $\langle M, \wedge, \vee \rangle$ is a distributive lattice,
- $\langle M, \cdot, e \rangle$ is a monoid,
- for all $a, b, c, d \in M$

 $a(b \wedge c)d = abd \wedge acd$ and $a(b \vee c)d = abd \vee acd$.

We call a distributive ℓ -monoid **M** idempotent or commutative if its monoid reduct is idempotent or commutative, respectively.

The class \mathcal{DLM} of all distributive ℓ -monoids forms a variety (equational class). Similarly, the classes \mathcal{IdDLM} and \mathcal{CIdDLM} of idempotent and commutative idempotent distributive ℓ -monoids are varieties.

Example

The inverse-free reduct of an $\ell\text{-}\mathsf{group}$ is a distributive $\ell\text{-}\mathsf{monoid}.$

Example

The inverse-free reduct of an ℓ -group is a distributive ℓ -monoid.

Example

For a distributive lattice $\langle D, \wedge, \vee \rangle$ with top element $\top \in D$ the algebra $\langle D, \wedge, \vee, \wedge, \top \rangle$ is a commutative idempotent distributive ℓ -monoid.

The inverse-free reduct of an ℓ -group is a distributive ℓ -monoid.

Example

For a distributive lattice $\langle D, \wedge, \vee \rangle$ with top element $\top \in D$ the algebra $\langle D, \wedge, \vee, \wedge, \top \rangle$ is a commutative idempotent distributive ℓ -monoid.

Example

A totally ordered monoid $\langle M, \cdot, e, \leq \rangle$, i.e., a monoid $\langle M, \cdot, e \rangle$ with a total order \leq on M such that $a \leq b$ implies $cad \leq cbd$ for $a, b, c, d \in M$, can be considered as a distributive ℓ -monoid $\langle M, \min, \max, \cdot, e \rangle$ which we also call totally ordered monoid.

Semilinear distributive ℓ -monoids

• We call a distributive *l*-monoid **M** semilinear if it is a subdirect product of totally ordered monoids.

- We call a distributive *l*-monoid **M** semilinear if it is a subdirect product of totally ordered monoids.
- The class *SemIdDLM* of semilinear idempotent distributive ℓ -monoids is a variety which is generated by the class of totally ordered idempotent monoids.

- We call a distributive *l*-monoid **M** semilinear if it is a subdirect product of totally ordered monoids.
- The class *SemIdDLM* of semilinear idempotent distributive ℓ -monoids is a variety which is generated by the class of totally ordered idempotent monoids.

Theorem (Merlier 1971)

Every commutative distributive *l*-monoid is semilinear.

- We call a distributive *l*-monoid **M** semilinear if it is a subdirect product of totally ordered monoids.
- The class *SemIdDLM* of semilinear idempotent distributive ℓ -monoids is a variety which is generated by the class of totally ordered idempotent monoids.

Theorem (Merlier 1971)

Every commutative distributive *l*-monoid is semilinear.

Corollary

The variety CIdDLM is the subvariety of SemIdDLM consisting of the commutative members of SemIdDLM.

Recall that an algebra \mathbf{A} is called locally finite if every finitely generated subalgebra of \mathbf{A} is finite and a class \mathcal{K} of algebras is called locally finite if every member of \mathcal{K} is locally finite.

Recall that an algebra \mathbf{A} is called locally finite if every finitely generated subalgebra of \mathbf{A} is finite and a class \mathcal{K} of algebras is called locally finite if every member of \mathcal{K} is locally finite.

Theorem (Green, Rees 1952)

The variety of idempotent monoids is locally finite.

Recall that an algebra \mathbf{A} is called locally finite if every finitely generated subalgebra of \mathbf{A} is finite and a class \mathcal{K} of algebras is called locally finite if every member of \mathcal{K} is locally finite.

Theorem (Green, Rees 1952)

The variety of idempotent monoids is locally finite.

Using this fact we can show:

Proposition

The variety $\mathcal{I}d\mathcal{DLM}$ of idempotent distributive ℓ -monoids is locally finite.

Recall that an algebra \mathbf{A} is called locally finite if every finitely generated subalgebra of \mathbf{A} is finite and a class \mathcal{K} of algebras is called locally finite if every member of \mathcal{K} is locally finite.

Theorem (Green, Rees 1952)

The variety of idempotent monoids is locally finite.

Using this fact we can show:

Proposition

The variety $\mathcal{I}d\mathcal{DLM}$ of idempotent distributive ℓ -monoids is locally finite.

Corollary

Sem IdDLM is locally finite and generated by the class of finite subdirectly irreducible totally ordered idempotent monoids.

$$\mathbf{G}_{3} = \langle \{\bot, e, \top\}, \cdot, e, \leq \rangle$$

$$\overrightarrow{e} \quad e \quad \bot \quad \top$$

$$\overrightarrow{e} \quad e \quad \bot \quad \top$$

$$\overrightarrow{\bot} \quad \bot \quad \bot \quad \bot$$

$$\overrightarrow{\top} \quad \top \quad \top \quad \top$$

Combining totally ordered idempotent monoids

Let L and M be totally ordered idempotent monoids, where we relabel the elements such that $L \cap M = \{e\}$. The *e*-sum of L and M is defined by $L \oplus M = \langle L \cup M, \cdot, e \leq \rangle$, where

Let L and M be totally ordered idempotent monoids, where we relabel the elements such that $L \cap M = \{e\}$. The *e*-sum of L and M is defined by $L \oplus M = \langle L \cup M, \cdot, e \leq \rangle$, where

• the product \cdot is the extension of the monoid operations on L and M with $a \cdot b = b \cdot a = a$ for all $a \in L \setminus \{e\}$ and $b \in M$,

Let L and M be totally ordered idempotent monoids, where we relabel the elements such that $L \cap M = \{e\}$. The *e*-sum of L and M is defined by $L \oplus M = \langle L \cup M, \cdot, e \leq \rangle$, where

- the product \cdot is the extension of the monoid operations on L and M with $a \cdot b = b \cdot a = a$ for all $a \in L \setminus \{e\}$ and $b \in M$,
- \leq is the least extension of the orders of L and M that satisfies for all $a \in L \setminus \{e\}$ and $b \in M$ that $a \leq b$ if $a \leq_{\mathbf{L}} e$ and $b \leq a$ if $e \leq_{\mathbf{L}} a$.

Let L and M be totally ordered idempotent monoids, where we relabel the elements such that $L \cap M = \{e\}$. The *e*-sum of L and M is defined by $L \oplus M = \langle L \cup M, \cdot, e \leq \rangle$, where

- the product \cdot is the extension of the monoid operations on L and M with $a \cdot b = b \cdot a = a$ for all $a \in L \setminus \{e\}$ and $b \in M$,
- \leq is the least extension of the orders of L and M that satisfies for all $a \in L \setminus \{e\}$ and $b \in M$ that $a \leq b$ if $a \leq_{\mathbf{L}} e$ and $b \leq a$ if $e \leq_{\mathbf{L}} a$.

Intuition: $\mathbf{L} \oplus \mathbf{M}$ is obtained by replacing the identity e in \mathbf{L} with \mathbf{M} and extending the order and product in such a way that the elements of \mathbf{M} behave like e with respect to elements of \mathbf{L} .

Lemma (cf. Olson 2012)

Let L and M be totally ordered idempotent monoids. Then $L \oplus M$ is an totally ordered idempotent monoid. Moreover, L and M embed into $L \oplus M$ via the inclusion maps.

Lemma (cf. Olson 2012)

Let L and M be totally ordered idempotent monoids. Then $L \oplus M$ is an totally ordered idempotent monoid. Moreover, L and M embed into $L \oplus M$ via the inclusion maps.

Lemma (Olson 2012)

Let $\mathbf{L},\,\mathbf{M},\,\text{and}\,\mathbf{N}$ be totally ordered idempotent monoids. Then

 $\mathbf{L} \oplus (\mathbf{M} \oplus \mathbf{N}) \cong (\mathbf{L} \oplus \mathbf{M}) \oplus \mathbf{N}.$

Lemma (cf. Olson 2012)

Let L and M be totally ordered idempotent monoids. Then $L \oplus M$ is an totally ordered idempotent monoid. Moreover, L and M embed into $L \oplus M$ via the inclusion maps.

Lemma (Olson 2012)

Let $\mathbf{L},\,\mathbf{M},$ and \mathbf{N} be totally ordered idempotent monoids. Then

 $\mathbf{L} \oplus (\mathbf{M} \oplus \mathbf{N}) \cong (\mathbf{L} \oplus \mathbf{M}) \oplus \mathbf{N}.$

So it makes sense to write $\mathbf{M}_1 \oplus \cdots \oplus \mathbf{M}_n$ for totally ordered idempotent monoids $\mathbf{M}_1, \ldots, \mathbf{M}_n$ or shorter $\bigoplus_{i=1}^n \mathbf{M}_i$, where $\bigoplus_{i=1}^0 \mathbf{M}_i = \mathbf{0}$ for some fixed trivial algebra $\mathbf{0}$. We note that $\mathbf{M} \oplus \mathbf{0} \cong \mathbf{0} \oplus \mathbf{M} \cong \mathbf{M}$ for all \mathbf{M} , i.e., $\mathbf{0}$ is the neutral element of the *e*-sum operation.

Back to the Examples

The totally ordered idempotent monoids C_2 , C_2^{∂} , G_3 , and D_3 are indecomposable with respect to the *e*-sum:

The *e*-sum decomposition

Theorem

Every finite totally ordered idempotent monoid \mathbf{M} is isomorphic to an e-sum $\bigoplus_{i=1}^{n} \mathbf{M}_{i}$ with $\mathbf{M}_{i} \in \{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}\}$. Moreover, this e-sum is unique with respect to the algebras $\{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}\}$.

Theorem

Every finite totally ordered idempotent monoid \mathbf{M} is isomorphic to an e-sum $\bigoplus_{i=1}^{n} \mathbf{M}_{i}$ with $\mathbf{M}_{i} \in \{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}\}$. Moreover, this e-sum is unique with respect to the algebras $\{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}\}$.

Corollary (cf. Gil-Férez, Jipsen, Metcalfe 2020)

The number I(n) of totally ordered idempotent monoids with $n \in \mathbb{N} \setminus \{0\}$ elements (up to isomorphism) is recursively defined by I(1) = 1, I(2) = 2, and

$$I(n) = 2 \cdot I(n-1) + 2 \cdot I(n-2)$$
 (n > 2).

Moreover,

$$\mathbf{I}(n) = \frac{(1+\sqrt{3})^n - (1-\sqrt{3})^n}{2\sqrt{3}}$$

Finite subdirectly irreducibles of $\mathcal{S}em\mathcal{I}d\mathcal{DLM}$

Theorem

Let M be a non-trivial finite semilinear idempotent distributive ℓ -monoid. Then the following are equivalent:

- **1** M is subdirectly irreducible.
- **2** $\mathbf{M} \cong \bigoplus_{i=1}^{n} \mathbf{M}_{i}$ for some $n \in \mathbb{N} \setminus \{0\}$ with $\mathbf{M}_{i} \in \{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}\}$ such that if $\mathbf{M}_{i} = \mathbf{M}_{i+1}$, then $\mathbf{M}_{i} \in \{\mathbf{G}_{3}, \mathbf{D}_{3}\}$ for every $i \in \{1, \ldots, n-1\}$.
- **3** Con(M) is a chain.

Finite subdirectly irreducibles of $\mathcal{S}em\mathcal{I}d\mathcal{DLM}$

Theorem

Let M be a non-trivial finite semilinear idempotent distributive ℓ -monoid. Then the following are equivalent:

- **1** M is subdirectly irreducible.
- **2** $\mathbf{M} \cong \bigoplus_{i=1}^{n} \mathbf{M}_{i}$ for some $n \in \mathbb{N} \setminus \{0\}$ with $\mathbf{M}_{i} \in \{\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}\}$ such that if $\mathbf{M}_{i} = \mathbf{M}_{i+1}$, then $\mathbf{M}_{i} \in \{\mathbf{G}_{3}, \mathbf{D}_{3}\}$ for every $i \in \{1, \ldots, n-1\}$.
- **3** Con(M) is a chain.

Corollary

The number $\mathbf{S}(n)$ of subdirectly irreducible totally ordered idempotent monoids with $n \in \mathbb{N} \setminus \{0\}$ elements (up to isomorphism) is recursively defined by $\mathbf{S}(1) = 1$, $\mathbf{S}(2) = 2$, $\mathbf{S}(3) = 4$, and

$$\mathbf{S}(n) = \mathbf{S}(n-1) + 2\mathbf{S}(n-2) + 2\mathbf{S}(n-3)$$
 (n > 3).

$\mathbf{M}_1 \oplus \cdots \oplus \mathbf{C}_2^{\partial} \oplus \mathbf{C}_2^{\partial} \oplus \cdots \oplus \mathbf{M}_n$

$\mathbf{M}_1 \oplus \cdots \oplus \mathbf{C}_2^{\partial} \oplus \mathbf{C}_2^{\partial} \oplus \cdots \oplus \mathbf{M}_n$

$$\mathbf{M}_1 \oplus \cdots \oplus \mathbf{C}_2^{\partial} \oplus \cdots \oplus \mathbf{M}_n$$

$\mathbf{M}_1 \oplus \cdots \oplus \mathbf{C}_2^{\partial} \oplus \mathbf{C}_2^{\partial} \oplus \cdots \oplus \mathbf{M}_n$

$\mathbf{M}_1 \oplus \cdots \oplus \mathbf{C}_2^{\partial} \oplus \mathbf{C}_2^{\partial} \oplus \cdots \oplus \mathbf{M}_n$

$\mathbf{M}_1 \oplus \cdots \oplus \mathbf{C}_2^{\partial} \oplus \mathbf{C}_2^{\partial} \oplus \cdots \oplus \mathbf{M}_{n-1}$

Describing the subvariety lattice

Goal: Describe the subvariety lattice of Sem IdDLM.

Describing the subvariety lattice

Goal: Describe the subvariety lattice of Sem IdDLM.

 A relation ≤ on a set P is called a quasi-order if it is reflexive and transitive. It is called a well quasi-order if it contains neither an infinite antichain nor an infinite descending chain. Goal: Describe the subvariety lattice of Sem IdDLM.

- A relation ≤ on a set P is called a quasi-order if it is reflexive and transitive. It is called a well quasi-order if it contains neither an infinite antichain nor an infinite descending chain.
- For algebras A and B we define the relation $\leq_{HS} (\leq_{IS})$ by

 $\mathbf{A} \leq_{HS} \mathbf{B}$ iff $\mathbf{A} \in HS(\{\mathbf{B}\})$ ($\mathbf{A} \leq_{IS} \mathbf{B}$ iff $\mathbf{A} \in IS(\{\mathbf{B}\})$),

where H, S, and I denote the closure under homomorphic images, subalgebras and ismorphic images.

Goal: Describe the subvariety lattice of Sem IdDLM.

- A relation ≤ on a set P is called a quasi-order if it is reflexive and transitive. It is called a well quasi-order if it contains neither an infinite antichain nor an infinite descending chain.
- For algebras A and B we define the relation $\leq_{HS} (\leq_{IS})$ by

 $\mathbf{A} \leq_{HS} \mathbf{B}$ iff $\mathbf{A} \in HS(\{\mathbf{B}\})$ ($\mathbf{A} \leq_{IS} \mathbf{B}$ iff $\mathbf{A} \in IS(\{\mathbf{B}\})$), where H, S, and I denote the closure under homomorphic images, subalgebras and ismorphic images.

• For a variety \mathcal{V} of finite type we denote by \mathcal{V}_* a fixed set which contains (up to isomorphism) exactly one copy of each finite subdirectly irreducible of \mathcal{V} . Then $\langle \mathcal{V}_*, \leq_{HS} \rangle$ and $\langle \mathcal{V}_*, \leq_{IS} \rangle$ are partially ordered sets.

Theorem (Davey 1979)

Let \mathcal{V} be a congruence-distributive, locally finite variety of finite type. Then the subvariety lattice of \mathcal{V} is completely distributive and is isomorphic to the lattice of order ideals of the poset $\langle \mathcal{V}_*, \leq_{HS} \rangle$.

Theorem (Davey 1979)

Let \mathcal{V} be a congruence-distributive, locally finite variety of finite type. Then the subvariety lattice of \mathcal{V} is completely distributive and is isomorphic to the lattice of order ideals of the poset $\langle \mathcal{V}_*, \leq_{HS} \rangle$.

Corollary (Olson 2012)

For a a congruence-distributive, locally finite variety \mathcal{V} of finite type the subvariety lattice of \mathcal{V} is countable iff $\langle \mathcal{V}_*, \leq_{HS} \rangle$ is a well quasi-ordered set.

We fix $Sem IdDLM_*$ to be the set of finite subdirectly irreducibles of Sem IdDLM that are *e*-sums of the algebras $C_2, C_2^{\partial}, G_3, D_3$.

We fix $Sem IdDLM_*$ to be the set of finite subdirectly irreducibles of Sem IdDLM that are *e*-sums of the algebras $\mathbf{C}_2, \mathbf{C}_2^\partial, \mathbf{G}_3, \mathbf{D}_3$.

As Sem IdDLM is congruence-distributive and locally finite, our goal is to show that $\langle Sem IdDLM_*, \leq_{HS} \rangle$ is a well quasi-ordered set.

We fix $Sem IdDLM_*$ to be the set of finite subdirectly irreducibles of Sem IdDLM that are *e*-sums of the algebras $C_2, C_2^{\partial}, G_3, D_3$.

As Sem IdDLM is congruence-distributive and locally finite, our goal is to show that $\langle Sem IdDLM_*, \leq_{HS} \rangle$ is a well quasi-ordered set.

Lemma

Every homomorphic image of an totally ordered idempotent monoid M is isomorphic to a subalgebra of M.

We fix $Sem IdDLM_*$ to be the set of finite subdirectly irreducibles of Sem IdDLM that are *e*-sums of the algebras $C_2, C_2^{\partial}, G_3, D_3$.

As Sem IdDLM is congruence-distributive and locally finite, our goal is to show that $\langle Sem IdDLM_*, \leq_{HS} \rangle$ is a well quasi-ordered set.

Lemma

Every homomorphic image of an totally ordered idempotent monoid M is isomorphic to a subalgebra of M.

So it suffices to show that $\langle Sem IdDLM_*, \leq_{IS} \rangle$ is a well quasi-ordered set.

For a quasi-ordered set $\langle P,\leq\rangle$ we define the order \leq^* on the set $\sigma(P)$ of finite sequences of P by

$$\begin{split} \langle p_1,\ldots,p_n\rangle \leq^* \langle q_1,\ldots,q_m\rangle &: \Longleftrightarrow \ \text{there exists an order embedding} \\ f \colon \{1,\ldots,n\} \to \{1,\ldots,m\} \text{ such that} \\ p_i \leq q_{f(i)} \text{ for all } i \in \{1,\ldots,n\}. \end{split}$$

For a quasi-ordered set $\langle P,\leq\rangle$ we define the order \leq^* on the set $\sigma(P)$ of finite sequences of P by

$$\begin{split} \langle p_1,\ldots,p_n\rangle \leq^* \langle q_1,\ldots,q_m\rangle &: \Longleftrightarrow \ \text{there exists an order embedding} \\ f \colon \{1,\ldots,n\} \to \{1,\ldots,m\} \text{ such that} \\ p_i \leq q_{f(i)} \text{ for all } i \in \{1,\ldots,n\}. \end{split}$$

Lemma (Higman 1952)

If $\langle P, \leq \rangle$ is a well quasi-ordered set, then so is $\langle \sigma(P), \leq^* \rangle$.

The order \leq_{IS} restricted to $\{\mathbf{C}_2, \mathbf{C}_2^\partial, \mathbf{G}_3, \mathbf{D}_3\}$

The order \leq_{IS} restricts to the following well quasi-order on the set $\{\mathbf{C}_2, \mathbf{C}_2^\partial, \mathbf{G}_3, \mathbf{D}_3\}$.

The order \leq_{IS} restricted to $\{\mathbf{C}_2, \mathbf{C}_2^\partial, \mathbf{G}_3, \mathbf{D}_3\}$

The order \leq_{IS} restricts to the following well quasi-order on the set $\{\mathbf{C}_2, \mathbf{C}_2^\partial, \mathbf{G}_3, \mathbf{D}_3\}$.

We define for $\mathbf{L}, \mathbf{M} \in \mathcal{S}em\mathcal{I}d\mathcal{DLM}_*$ the relation \preceq by

$$\mathbf{L} \preceq \mathbf{M} :\iff \langle \mathbf{L}_1, \ldots, \mathbf{L}_m \rangle \leq_{IS}^* \langle \mathbf{M}_1, \ldots, \mathbf{M}_n \rangle,$$

for $\mathbf{L} = \mathbf{L}_1 \oplus \cdots \oplus \mathbf{L}_m$, $\mathbf{M} = \mathbf{M}_1 \oplus \cdots \oplus \mathbf{M}_n$ with $\mathbf{M}_i, \mathbf{L}_j \in {\mathbf{C}_2, \mathbf{C}_2^\partial, \mathbf{G}_3, \mathbf{D}_3}.$

The subvariety lattice of $\mathcal{S}em\mathcal{I}d\mathcal{DLM}$

Using Higman's Lemma and the fact that the restriction of a well quasi-order to a subset is again a well quasi-order, we obtain:

Corollary

 $\langle Sem \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}_*, \preceq \rangle$ is a well quasi-ordered set.

The subvariety lattice of $\mathcal{S}em\mathcal{I}d\mathcal{DLM}$

Using Higman's Lemma and the fact that the restriction of a well quasi-order to a subset is again a well quasi-order, we obtain:

Corollary

 $\langle Sem \mathcal{I} d \mathcal{D} \mathcal{L} \mathcal{M}_*, \preceq \rangle$ is a well quasi-ordered set.

Considering how embeddings behave we can show:

Lemma

For all $\mathbf{L}, \mathbf{M} \in \mathcal{S}em\mathcal{I}d\mathcal{DLM}_*$ we have $\mathbf{L} \preceq \mathbf{M}$ if and only if $\mathbf{L} \leq_{IS} \mathbf{M}$.

The subvariety lattice of $\mathcal{S}em\mathcal{I}d\mathcal{DLM}$

Using Higman's Lemma and the fact that the restriction of a well quasi-order to a subset is again a well quasi-order, we obtain:

Corollary

 $\langle \mathcal{S}em\mathcal{I}d\mathcal{DLM}_*, \preceq \rangle$ is a well quasi-ordered set.

Considering how embeddings behave we can show:

Lemma

For all $\mathbf{L}, \mathbf{M} \in \mathcal{S}em\mathcal{I}d\mathcal{DLM}_*$ we have $\mathbf{L} \preceq \mathbf{M}$ if and only if $\mathbf{L} \leq_{IS} \mathbf{M}$.

Thus we get that $\langle Sem IdDLM_*, \leq_{IS} \rangle$ is a well quasi-ordered set, yielding

Theorem

The subvariety lattice of $\mathcal{S}em\mathcal{I}d\mathcal{DLM}$ is countably infinite.

A description of the subvariety lattice of $\mathcal{S}em\mathcal{I}d\mathcal{DLM}$

• Using the theorem of (Davey 1979) and the fact that $\leq_{HS} = \preceq$ we get that the subvariety lattice of $\mathcal{S}em\mathcal{I}d\mathcal{DLM}$ is isomorphic to the lattice of order-ideals of $\langle \mathcal{S}em\mathcal{I}d\mathcal{DLM}_*, \preceq \rangle$, via the map that maps an order ideal \mathcal{I} to the variety $V(\mathcal{I})$ generated by \mathcal{I} .

- Using the theorem of (Davey 1979) and the fact that ≤_{HS} = ≤ we get that the subvariety lattice of SemIdDLM is isomorphic to the lattice of order-ideals of (SemIdDLM_{*}, ≤), via the map that maps an order ideal I to the variety V(I) generated by I.
- Thus, by the characterization of the finite subdirectly irreducibles and the definition of \leq via the Higman order, we get a description of the subvariety lattice of Sem IdDLM.

For \mathcal{CIdDLM} the previous theorems yield the following immediate results:

Proposition

Let **M** be a finite commutative totally ordered idempotent monoid. Then $\mathbf{M} \cong \bigoplus_{i=1}^{n} \mathbf{M}_{i}$ with $\mathbf{M}_{i} \in {\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}}$. Moreover **M** is subdirectly irreducible if and only if for all $i \in {1, ..., n - 1}$, $\mathbf{M}_{i} \neq \mathbf{M}_{i+1}$. For \mathcal{CIdDLM} the previous theorems yield the following immediate results:

Proposition

Let \mathbf{M} be a finite commutative totally ordered idempotent monoid. Then $\mathbf{M} \cong \bigoplus_{i=1}^{n} \mathbf{M}_{i}$ with $\mathbf{M}_{i} \in {\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}}$. Moreover \mathbf{M} is subdirectly irreducible if and only if for all $i \in {1, ..., n-1}$, $\mathbf{M}_{i} \neq \mathbf{M}_{i+1}$.

Corollary

There are up to isomorphism 2^{n-1} totally ordered commutative idempotent monoids of size $n \ge 1$.

Subdirectly irreducibles of \mathcal{CIdDLM}

For n > 2 we define inductively the algebras \mathbf{C}_n and \mathbf{C}_n^∂ by

$$\mathbf{C}_n := \mathbf{C}_2 \oplus \mathbf{C}_{n-1}^{\partial}$$
$$\mathbf{C}_n^{\partial} := \mathbf{C}_2^{\partial} \oplus \mathbf{C}_{n-1}$$

and we set $C_1 = C_1^{\partial} = 0$.

Subdirectly irreducibles of \mathcal{CIdDLM}

For n > 2 we define inductively the algebras \mathbf{C}_n and \mathbf{C}_n^∂ by

$$\mathbf{C}_n := \mathbf{C}_2 \oplus \mathbf{C}_{n-1}^{\partial}$$
$$\mathbf{C}_n^{\partial} := \mathbf{C}_2^{\partial} \oplus \mathbf{C}_{n-1}$$

and we set $\mathbf{C}_1 = \mathbf{C}_1^{\partial} = \mathbf{0}$.

Remark

The algebras C_n are exactly the reducts of the finite Sugihara chains.

Subdirectly irreducibles of \mathcal{CIdDLM}

For n > 2 we define inductively the algebras \mathbf{C}_n and \mathbf{C}_n^∂ by

$$\mathbf{C}_n := \mathbf{C}_2 \oplus \mathbf{C}_{n-1}^{\partial}$$
$$\mathbf{C}_n^{\partial} := \mathbf{C}_2^{\partial} \oplus \mathbf{C}_{n-1}$$

and we set $C_1 = C_1^{\partial} = 0$.

Remark

The algebras C_n are exactly the reducts of the finite Sugihara chains.

Proposition

For every n > 1 the algebras \mathbf{C}_n and \mathbf{C}_n^∂ are up to isomorphism the only subdirectly irreducible totally ordered commutative idempotent monoids with n elements.

Example \mathbf{C}_3 and \mathbf{C}_3^∂

$$n \cdot m = \max_{\mathbb{N}}(n, m)$$

The subvariety lattice of \mathcal{CIdDLM}

Theorem

The subvariety lattice of CIdDLM is of the form:

Thank you!

References I

- Almudena Colacito, Nikolaos Galatos, George Metcalfe, and Simon Santschi. From distributive ℓ-monoids to ℓ-groups, and back again. J. Algebra 601 (2022), 129–148.
- [2] Brian A. Davey. On the lattice of subvarieties. Houston J. Math. 5 (1979), 183–192.
- [3] Nikolaos Galatos. *Minimal varieties of residuated lattices*. Algebra Universalis 52.2-3 (2004), 215–239.
- [4] José Gil-Férez, Peter Jipsen, and George Metcalfe. Structure theorems for idempotent residuated lattices. Algebra Universalis 81.2 (2020), 25.
- [5] J. A. Green and D. Rees. On semi-groups in which $x^r = x$. Proc. Camb. Philos. Soc. 48.1 (1952), 35–40.
- [6] Graham Higman. Ordering by Divisibility in Abstract Algebras. Proc. Lond. Math. Soc. s3-2.1 (1952), 326–336.

- [7] Thérèse Merlier. *Sur les demi-groupes réticulés et les o-demi-groupes*. Semigroup Forum 2.1 (1971), 64–70.
- [8] Jeffrey S Olson. The subvariety lattice for representable idempotent commutative residuated lattices. Algebra Universalis 67.1 (2012), 43–58.