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 Lukasiewicz logic

• Infinite-valued  Lukasiewicz logic introduced in 1930.

• It is a substructural logic: {·,!,^,_, 0, 1}.

• Fuzzy logic: axiomatic extension of Hájek’s Basic Logic with ¬¬x = x.

• Standard model: MV-algebra on [0, 1]:

[0, 1]MV = ([0, 1], · L,! L,min,max, 0, 1)

with x · L y = max(x+ y � 1, 0), x ! L y = min(1� x+ y, 1).

• [0, 1]MV generates the variety of MV-algebras, the equivalent algebraic
semantics of  Lukasiewicz logic.

• Free MV-algebra FMV(n) = algebras of formulas over n-variables =
algebras of McNaughton functions: [0, 1]n ! [0, 1].
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The positive fragment of  Lukasiewicz logic

• We consider the 0-free fragment of  Lukasiewicz logic.
Signature: {·,!,^,_, 1}

• Since:
x ^ y = x · (x ! y), x _ y = (x ! y) ! y

we consider the fragment in the language of hoops {·,!, 1}

• The equivalent algebraic semantics is the variety of Wajsberg hoops.
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Hoops

Hoops introduced by Buchi and Owens, based on work by Bosbach.

A hoop is an algebra A = (A, ·,!, 1) s.t. (A, ·, 1) is a commutative monoid and:

(H1) x ! x = 1,

(H2) x · (x ! y) = y · (y ! x),

(H3) (x · y) ! z = x ! (y ! z).

• Order definable as: x  y i↵ x ! y = 1

• meet-semilattice order: x ^ y = x · (x ! y).

• (·,!) form a residuated pair : x · y  z i↵ y  x ! z.

• Basic hoops (i.e., semilinear hoops) have a lattice order:

x _ y = ((x ! y) ! y) ^ ((y ! x) ! x)
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Wajsberg hoops

Wajsberg hoops are basic hoops such that (x ! y) ! y = (y ! x) ! x.

• Equivalent algebraic semantics of the positive fragment of  Lukasiewicz logic
 L+.

• Special role in the theory of hoops. A totally ordered WH is either a
negative cone of an `-group or an MV-algebra ([Blok,Ferreirim 2000],
[Aglianò, Panti 2002]).

• Fundamental to understand BL-algebras basic hoops [Aglianò, Montagna
2003].

• Known properties: deductive interpolation (via amalgamation, [Montagna
2006]), not structurally complete [Cintula Metcalfe 2009].

• The variety of Wajsberg hoops is generated by [0, 1]WH = ([0, 1], · L,! L, 1)
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Free finitely-generated Wajsberg hoops can be characterized via McNaughton
functions (Aglianò, Panti):

FWH(n) = {f 2 FMV(n) : f(1) = 1}

Alternative proof (sketch):

• FWH(n) is (isomorphic to) the 0-free subalgebra of positive terms in
FMV(n).

• positive terms in FMV(n) correspond to functions such that f(1) = 1.

We use this to find a duality for finitely presented Wajsberg hoops.

Finitely presented in V: finitely generated quotient of a finitely generated free
algebra.
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(McNaughton’s theorem): FMV(n) is the algebra of McNaughton’s functions
(piecewise linear with integer coe�cients) from [0, 1]n to [0, 1] with operations
defined pointwise from [0, 1] L.

(0, 0) (1, 0)

(1, 1)(0, 1)

1

1-sets $ rational polyhedra in [0, 1]n (Mundici).

Duality between finitely presented MV-algebras (with homomorphisms) and
rational polyhedra (with Z-maps: componentwise McNaughton’s functions)
(Marra, Spada).

Fin. gen quotient FMV(n)/✓ $ principal quotient FMV(n)/f $ 1-set of f

1
Figure from S. Aguzzoli, S. Bova, The free n-generated BL-algebra, APAL, 2010.
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• Given f 2 FWH(n), the 1-set of f , Of always contains 1.

• We show that finitely presented Wajsberg hoops are categorically equivalent
to a (non-full) subcategory of finitely presented MV-algebras

• This category corresponds via Marra-Spada duality to pointed rational
polyhedra with pointed Z-maps:

- objects: rational polyhedra P in [0, 1]n such that 1 2 P

- morphisms: Z-maps that map 1 to 1.

Theorem
Finitely presented Wajsberg hoops are dually equivalent to pointed rational
polyhedra.

P ✓ [0, 1]n pointed rational polyhedron �! W(P ) = {f|P : f 2 FWH(n)}
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Examples

Proposition
Finitely presented subdirectly irreducible Wajsberg hoops are finitely generated
subalgebras of [0, 1], and therefore bounded and simple.
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Deductions

Using the duality, we will show some metalogical properties of the positive
fragment of  Lukasiewicz logic.

Deductions in  L+ can be studied geometrically, and correspond to deductions of
positive terms in  L.

Let t, u be positive MV terms:

t ` L+ u i↵ Ot ✓ Ou i↵ t ` L u
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Unification via projectivity

Let L be an algebraizable logic, with equivalent algebraic semantics a variety V.

Unification problem: finite set of identities ⌃ = {si = ti : i = 1 . . . n}.
A solution or unifier is a substitution � that makes the identities true in the
variety: V |= �(si) = �(ti)

[Ghilardi,1997]: unification problems can equivalently be studied algebraically, via
finitely presented and projective algebras.

Projective algebras in a variety are retracts of free algebras:

A is a retract of F if A
i
&&
F

j

gg , with j � i = id.

Unification problem: finitely presented algebra A 2 V.
Solution or unifier: homomorphism u : A ! P, P projective in V.
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Unification via projectivity

Preorder on unifiers: u1  u2 i↵ there exists v : v � u2 = u1.

The unification type (UT) of a unification problem can be: unitary, finitary,
infinitary, or nullary, depending on the cardinality of maximal elements in the
associated partial order (best solutions).

The unification type of a logic, or of a variety V, is the worst unification type
occurring among the unification problems in V.

Examples: Boolean algebras unitary [Balbes], Heyting algebras finitary [Ghilardi],
Semigroups infinitary [Plotkin], MV-algebras nullary [Marra,Spada].
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Projective Wajsberg hoops

Theorem
Finitely generated projective Wajsberg hoops are finitely presented.

We use the duality and works by [Cabrer, Cabrer Mundici] for the MV-algebraic
framework.

Theorem
Given A Wajsberg hoop with n generators, A is projective i↵ A ⇠= W(P ), where
P ✓ [0, 1]n is a retract of [0, 1]n by a pointed Z-map.

Theorem
If P is a pointed Z-retract of [0, 1]n then

1 P is contractible,

2 P is strongly regular.

If P is one-dimensional, the converse also holds.
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Examples

Proposition
No (nontrivial) bounded Wajsberg hoop is projective in a variety containing WH.

In particular: 2 is not projective in the variety of hoops or of residuated lattices.
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Unification in WH

Unification problems in WH do not reduce to unification of 0-free terms in MV.

f

f(x) = ((x ! x
2) ! x) ! x

⌃ : f ⇡ 1

�(x) = 0, 1 incomparable unifiers in MV,

in WH only �(x) = 1

However: Marra and Spada pathological example to show that MV has nullary
unification type can be adapted to Wajsberg hoops.
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Unification in WH

Theorem
The unification type of Wajsberg hoops, and thus of the positive fragment of
 Lukasiewicz logic, is nullary.
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Admissibility

Let ⌃,� be finite sets of identities in the language of a variety V.

A clause ⌃ ) � is V-admissible if each unifier � of ⌃ is also a unifier of some
member of �.

[Cabrer, Metcalfe]: Checking admissibility in V is decidable if

• the exact unification type of V is at most finitary

• there is an algorithm to find a complete set of maximal unifiers

• the equational theory of V is decidable

Algebraically: generality order on coexact unifiers: onto homomorphisms from
finitely presented algebras to exact algebras.

Exact algebra: finitely generated subalgebra of some finitely generated free
algebra.

Ex: MV-algebras have nullary unification type but finitary exact type.
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Exact Wajsberg hoops

Via the duality and the work of Cabrer for the MV-algebraic framework:

Theorem
A Wajsberg hoop A is exact i↵ A ⇠= W(P ) where P ✓ [0, 1]n is a pointed
rational polyhedron that is connected and strongly regular.
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Admissibility in WH

Given a finitely presented MV-algebra, one finds a finite set of maximal coexact
unifiers ([Cabrer, Metcalfe],[Jěrábek]).

Given a finitely presented Wajsberg hoop, one finds one maximal coexact unifier.
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Admissibility in WH

Admissibility in WH does not reduce to admissibility of 0-free MV-terms.

f f(x) = ((x ! x
2) ! x) ! x

g

g(x) = ((x ! x
2) ! x

(f = 1) ) (g = 1) admissible in WH but not in MV.
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Admissibility in WH

Wajsberg hoops have nullary unification type and unitary exact type.

Wajsberg hoops have the FEP (Blok Ferreirim), thus decidable equational theory.

Theorem
Admissibility of rules in Wajsberg hoops, and the positive fragment of
 Lukasiewicz logic, is decidable.
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Conclusions

• Finitely presented Wajsberg hoops are dually equivalent to the category of
pointed rational polyhedra

• Finitely generated projective and exact Wajsberg hoops can be
characterized geometrically

•  L+ has nullary unification type, but unitary exact type, admissibility of rules
is decidable.

• Future work: geometrical representation for finitely presented and projective
BL-algebras and basic hoops?

Thank you!

For more details and references: S. Ugolini, The polyhedral geometry of
Wajsberg hoops, https://arxiv.org/abs/2201.07009.
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