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Preliminaries

Let V be a variety with at least a constant symbol:

V is a variety with ~0 and ~1 if there are 0-ary terms 0i and 1i ,
with 1 ≤ i ≤ N such that V |=

∧N
i=1 0i ≈ 1i → x ≈ y .

If A ∈ V then we say that ~e ∈ AN is a central element of A if
there exists an isomorphism τ : A→ A1 × A2, such that
τ(ei ) = (0i , 1i ), 1 ≤ i ≤ N.
We say that ~e and ~f are a pair of complementary central
elements of A if there exists an isomorphism τ : A→ A1 × A2
such that τ(ei ) = (0i , 1i ) and τ(fi ) = (1i , 0i ), 1 ≤ i ≤ N.
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A pair of congruences (θ, δ) of an algebra A is a pair of
complementary factor congruences of A if θ ∩ δ = ∆A and
θ ◦ δ = ∇A.

Theorem (Vaggione, Sánchez Terraf [28])

Let V be a variety with ~0 and ~1. T.F.E:
(DP) For every pair (~e, ~f ) of complementary central elements, there

is a unique pair (θ, δ) of complementary factor congruences
such that for every 1 ≤ i ≤ N

(ei , 0i ) ∈ θ and (ei , 1i ) ∈ δ and (fi , 0i ) ∈ δ and (fi , 1i ) ∈ θ
(BFC) V has Boolean factor congruences, i.e., the set of factor

congruences of any algebra in V is a Boolean sublattice of its
congruence lattice.

(DFC) V has definable factor congruences; i.e, there is a first order
formula ψ(~x , ~y , ~z) such that for every A,B ∈ V

A× B |= ψ([~0,~1], [~a, ~b], [~c , ~d ]) iff ~a = ~c
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Generalities about Varieties with BFC

Let V be a variety with ~0 and ~1 and suppose that it has BFC.

For every A ∈ V, we write Z (A) to denote the set of central
elements of A.
~e �A ~f to denote that ~e and ~f are complementary central
elements of A.
If ~e is a central element of A we write θA

~0,~e
and θA

~1,~e
for the

unique pair of complementary factor congruences satisfying
~e/θA

~0,~e
= ~0/θA

~0,~e
and ~e/θA

~1,~e
= ~1/θA

~1,~e
.

Theorem
Let V be a variety with BFC. The map g : Z (A)→ FC (A), defined
by g(~e) = θA

~0,~e
is a bijection and its inverse h : FC (A)→ Z (A) is

defined by h(θ) = ~e, where ~e is the only ~e ∈ AN such that
~e/θ = ~0/θ and ~e/θ∗ = ~1/θ∗.
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Z(A) = (Z (A),∨A,∧A,
cA ,~0,~1) is a Boolean algebra which is

isomorphic to (FC (A),∨,∩,∗ ,∆A,∇A).
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Definition
Let V be a variety with BFC. We say that V is stable by
complements if for every homomorphism h : A→ B and
~e, ~f ∈ Z (A):

~e �A ~f ⇒ h(~e) �B h(~f ).

Warning !
There are varieties with BFC with homomorphisms such that:
(1) preserve central elements but does not preserve

complementary central elements,
(2) does not preserve nor central elements nor complementary

central elements.
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(1) S∨0,1: Bounded join semilattices.
ϕ(x , y , z) = (x ∨ z ≈ y ∨ z).
A = 2× 2.
Z (A) = A.
α : A→ A,

(1, 1) 7→ (1, 1)
(0, 0) 7→ (0, 0)
(0, 1) 7→ (1, 1)
(1, 0) 7→ (1, 1)

α preserves central elements but does not preserve complementary
central elements.
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(2)M: Bounded lattices.
M has BFC.
If C = 2× 2 and D is

◦1

a◦ ◦b ◦c

◦0

C ≤ D.
The inclusion does not preserve nor central elements nor
complementary central elements.
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Coextensive Varieties

A category with finite products C is called coextensive if for each
pair of objects X ,Y of C the canonical functor

× : X/C× Y /C→ (X × Y )/C

is an equivalence.

Examples
Rigs, Real rigs, Integral rigs,
Commutative rings with unit,
Bounded distributive lattices,
Residuated integral rigs, integral, bounded and commutative
residuated lattices, etc.
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A variety V is a Pierce Variety if there exist a positive natural
number N, 0-ary terms 01,...,0N , 11,...,1N and a term U(x , y , ~z , ~w),
such that the following identities hold in V:

U(x , y ,~0,~1) = x

U(x , y ,~1,~0) = y .

Examples

Rigs and Rings with unit: U(x , y , z ,w) = (x ·w) + (y · z), 0, 1.
Bounded lattices: U(x , y , z ,w) = (x ∧ w) ∨ (y ∧ z), 0, 1.
Church varieties: Varieties with a term u(x , y , z) and 0-ary
terms 0 and 1 satisfying u(x , y , 0) = x and u(x , y , 1) = y .

Boolean algebras: u(x , y , z) = (x ∨ z) ∧ (y ∨ z ′), 0, 1.
Integral, bounded and commutative residuated lattices:
u(x , y , z) = (x ∨ z) ∧ (y ∨ (z → 0)), 0, 1.
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Theorem ([36])

Let V a variety. T.F.E:

1 V is coextensive.
2 V is a Pierce variety in which the relation ~e �A ~f is equationally

definable.
3 V is a Pierce variety stable by complements.

σ(~x , ~y) =
n∧

i=1

pi (~x , ~y) = qi (~x , ~y) defines ~e � ~f in V.
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3 V is a Pierce variety stable by complements.

An algebra A in V is indecomposable if and only if the following
sequents hold:

0 = 1 `⊥

σ(~x , ~y) `~x ,~y (~x = ~0 ∧ ~y = ~1) ∨ (~x = ~1 ∧ ~y = ~0).
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Theorem ([36])

Let V a variety. T.F.E:
1 V is coextensive.
2 V is a Pierce variety in which the relation ~e �A ~f is equationally

definable.
3 V is a Pierce variety stable by complements.

Definition
Let E be a topos. A V-model X of E is V-indecomposable if the
sequents

0 = 1 `⊥

σ(~x , ~y) `~x ,~y (~x = ~0 ∧ ~y = ~1) ∨ (~x = ~1 ∧ ~y = ~0)

hold in the internal logic of E.
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Theorem ([36])

Let V a variety. T.F.E:
1 V is coextensive.
2 V is a Pierce variety in which the relation ~e �A ~f is equationally

definable.
3 V is a Pierce variety stable by complements.

Proposition
Let E be a topos. A V-model X of E is V-indecomposable iff the
diagram below

0 ! //1
~1 //

~0
//X n

is an equalizer in E, and the morphism α : 1 + 1→ [σ(~x , ~y)]X is an
isomorphism.
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The Gaeta topos and fp-coextensive varieties

Definition
A coextensive variety V is said to be fp-coextensive if Modfp(V) is
coextensive.

Theorem

Let V be a coextensive variety. Then V is fp-coextensive if and only
if binary products of finitely generated free algebras of V are finitely
presented.

Proposition

Let V be a coextensive variety of finite type. If V is locally finite
then it is fp-coextensive.
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The Gaeta topos and fp-coextensive varieties

Let C be a small extensive category and let X be an object of C.

{fi : Xi → X | i ∈ I} ∈ KG(X ) iff I < ω and [fi ] : ΣXi → X is an
iso.

Shv(C, JG) =⇒ Gaeta topos

If V is an fp-coextensive variety

G(V) = Shv(Modfp(V)op, JG)
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Main Theorem

Theorem

Let V be an fp-coextensive variety. Then, the following are
equivalent:

(1) G(V) is a classifying topos for V-indecomposable objects.
(2) FV(x) is indecomposable.
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Applications: Bounded distributive lattices

U(x , y , z ,w) = (x ∨ z) ∧ (y ∨ w).
σ(x , y) = (x ∧ y = 0) ∧ (x ∨ y = 1).
DL01 is fp-coextensive. (it is locally finite)

1
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∴ G(DL01) classifies DL01-indecomposable objects.
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Applications: Integral rigs

Integral rigs

A integral rig is an algebra A = (A,+, ·, 0, 1) of type (2, 2, 0, 0)
such that the structures (A, ·, 1) and (A,+, 0) are commutative
monoids such that:

(1) x · 0 = 0.
(2) x · (y + z) = (x · y) + (x · z).
(3) 1 + x = x .
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Applications: Integral rigs

U(x , y , z ,w) = (x + z) · (y + w).

σ(x , y) = (x · y = 0) ∧ (x + y = 1).
RN is fp-coextensive ([25]).
FRN (x): 0 < ... < xn < ... < x2 < x < x0 = 1.

∴ G(RN ) classifies RN -indecomposable objects.
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Applications: Commutative rings with unit

U(x , y , z ,w) = (x + z) · (y + w).
σ(x , y) = (x · y = 0) ∧ (x + y = 1).
R is fp-coextensive. (floklore)
FR(x) = Z[x ] is indecomposable.

∴ G(R) classifies R-indecomposable objects.
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Applications: Heyting algebras

U(x , y , z ,w) = (z ∧ y) ∨ (¬z ∧ x).
σ(x , y) = (x ∧ y = 0) ∧ (x ∨ y = 1).
H is fp-coextensive. ([17])
FH(x) is indecomposable. ([9])

∴ G(H) classifies H-indecomposable objects.
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Applications: MV-algebras

MV-algebras

An MV-algebra is an algebra (A,⊕,¬, 0) of type (2, 1, 0) such that
(A,⊕, 0) is a commutative monoid such that the following
equations hold:

1 ¬¬x = x .
2 x ⊕ ¬0 = ¬0.
3 ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x .

x + y = ¬(¬x ⊕ y)⊕ y 1 = ¬0 x · y = ¬(¬x ⊕ ¬y)
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Applications: MV-algebras

U(x , y , z ,w) = (x + z) · (y + w).
σ(x , y) = (x + y = 0) ∧ (x · y = 1).
MV is fp-coextensive. ([24])
FMV(x) is indecomposable. ([13])

∴ G(MV) classifiesMV-indecomposable objects.
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Applications: Gödel algebras

Gödel algebras

An algebra A = (A,∧,∨,→, 0, 1) of type (2, 2, 2, 0, 0) is a Gödel
algebra provided that:

1 (A,∧,∨,→, 0, 1) ∈ H.
2 (x → y) ∨ (y → x) = 1.
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Applications: Gödel algebras

PH is coextensive.

(proof: similar to the proof for H)
PH is fp-coextensive. (it is locally finite)
FPH(x) is decomposable. (¬x ∨ ¬¬x = 1 and ¬x ∧ ¬¬x = 0)

¬x

0

x

¬x ∨ x ¬¬x

1

∴ G(PH) does not classifiesMV-indecomposable objects.
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Thanks !
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