Coextensive varieties and the Gaeta topos.

W. J. Zuluaga Botero

Departamento de Matemática, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil–Argentina

> TACL 2021-22 Coímbra, June 2022.

W. J. Zuluaga Botero Coextensive varieties and the Gaeta topos.

Let $\ensuremath{\mathcal{V}}$ be a variety with at least a constant symbol:

Let $\ensuremath{\mathcal{V}}$ be a variety with at least a constant symbol:

• \mathcal{V} is a variety with $\vec{0}$ and $\vec{1}$ if there are 0-ary terms 0_i and 1_i , with $1 \le i \le N$ such that $\mathcal{V} \models \bigwedge_{i=1}^N 0_i \approx 1_i \to x \approx y$.

Let \mathcal{V} be a variety with at least a constant symbol:

- \mathcal{V} is a variety with $\vec{0}$ and $\vec{1}$ if there are 0-ary terms 0_i and 1_i , with $1 \leq i \leq N$ such that $\mathcal{V} \models \bigwedge_{i=1}^N 0_i \approx 1_i \rightarrow x \approx y$.
- If A ∈ V then we say that e ∈ A^N is a central element of A if there exists an isomorphism τ : A → A₁ × A₂, such that τ(e_i) = (0_i, 1_i), 1 ≤ i ≤ N.

Let \mathcal{V} be a variety with at least a constant symbol:

- \mathcal{V} is a variety with $\vec{0}$ and $\vec{1}$ if there are 0-ary terms 0_i and 1_i , with $1 \leq i \leq N$ such that $\mathcal{V} \models \bigwedge_{i=1}^N 0_i \approx 1_i \rightarrow x \approx y$.
- If A ∈ V then we say that e ∈ A^N is a central element of A if there exists an isomorphism τ : A → A₁ × A₂, such that τ(e_i) = (0_i, 1_i), 1 ≤ i ≤ N.
- We say that *e* and *f* are a pair of complementary central elements of A if there exists an isomorphism τ : A → A₁ × A₂ such that τ(e_i) = (0_i, 1_i) and τ(f_i) = (1_i, 0_i), 1 ≤ i ≤ N.

Let \mathcal{V} be a variety with at least a constant symbol:

- \mathcal{V} is a variety with $\vec{0}$ and $\vec{1}$ if there are 0-ary terms 0_i and 1_i , with $1 \leq i \leq N$ such that $\mathcal{V} \models \bigwedge_{i=1}^N 0_i \approx 1_i \rightarrow x \approx y$.
- If A ∈ V then we say that e ∈ A^N is a central element of A if there exists an isomorphism τ : A → A₁ × A₂, such that τ(e_i) = (0_i, 1_i), 1 ≤ i ≤ N.
- We say that *e* and *f* are a pair of complementary central elements of A if there exists an isomorphism τ : A → A₁ × A₂ such that τ(e_i) = (0_i, 1_i) and τ(f_i) = (1_i, 0_i), 1 ≤ i ≤ N.

Theorem (Vaggione, Sánchez Terraf [28])

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$.

Theorem (Vaggione, Sánchez Terraf [28])

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$. T.F.E:

Theorem (Vaggione, Sánchez Terraf [28])

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$. T.F.E:

(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that for every $1 \le i \le N$

Theorem (Vaggione, Sánchez Terraf [28])

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$. T.F.E:

(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that for every $1 \le i \le N$

$$(e_i, 0_i) \in \theta$$
 and $(e_i, 1_i) \in \delta$ and $(f_i, 0_i) \in \delta$ and $(f_i, 1_i) \in \theta$

Theorem (Vaggione, Sánchez Terraf [28])

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$. T.F.E:

(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that for every $1 \le i \le N$

 $(e_i, 0_i) \in \theta$ and $(e_i, 1_i) \in \delta$ and $(f_i, 0_i) \in \delta$ and $(f_i, 1_i) \in \theta$ (BFC) \mathcal{V} has Boolean factor congruences, i.e., the set of factor congruences of any algebra in \mathcal{V} is a Boolean sublattice of its congruence lattice.

Theorem (Vaggione, Sánchez Terraf [28])

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$. T.F.E:

(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that for every $1 \le i \le N$

 $(e_i, 0_i) \in \theta$ and $(e_i, 1_i) \in \delta$ and $(f_i, 0_i) \in \delta$ and $(f_i, 1_i) \in \theta$

- (BFC) \mathcal{V} has Boolean factor congruences, i.e., the set of factor congruences of any algebra in \mathcal{V} is a Boolean sublattice of its congruence lattice.
- (DFC) \mathcal{V} has definable factor congruences; i.e, there is a first order formula $\psi(\vec{x}, \vec{y}, \vec{z})$ such that for every $A, B \in \mathcal{V}$

Theorem (Vaggione, Sánchez Terraf [28])

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$. T.F.E:

(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that for every $1 \le i \le N$

 $(e_i, 0_i) \in \theta$ and $(e_i, 1_i) \in \delta$ and $(f_i, 0_i) \in \delta$ and $(f_i, 1_i) \in \theta$

(BFC) \mathcal{V} has Boolean factor congruences, i.e., the set of factor congruences of any algebra in \mathcal{V} is a Boolean sublattice of its congruence lattice.

(DFC) \mathcal{V} has definable factor congruences; i.e, there is a first order formula $\psi(\vec{x}, \vec{y}, \vec{z})$ such that for every $A, B \in \mathcal{V}$ $A \times B \models \psi([\vec{0}, \vec{1}], [\vec{a}, \vec{b}], [\vec{c}, \vec{d}])$ iff $\vec{a} = \vec{c}$

Let ${\cal V}$ be a variety with $\vec{0}$ and $\vec{1}$ and suppose that it has BFC.

For every A ∈ V, we write Z(A) to denote the set of central elements of A.

- For every A ∈ V, we write Z(A) to denote the set of central elements of A.
- $\vec{e} \diamond_A \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.

- For every A ∈ V, we write Z(A) to denote the set of central elements of A.
- $\vec{e} \diamond_A \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta^{A}_{\vec{0},\vec{e}}$ and $\theta^{A}_{\vec{1},\vec{e}}$ for the unique pair of complementary factor congruences satisfying

- For every A ∈ V, we write Z(A) to denote the set of central elements of A.
- $\vec{e} \diamond_A \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta^{A}_{\vec{0},\vec{e}}$ and $\theta^{A}_{\vec{1},\vec{e}}$ for the unique pair of complementary factor congruences satisfying $\vec{e}/\theta^{A}_{\vec{0},\vec{e}} = \vec{0}/\theta^{A}_{\vec{0},\vec{e}}$

- For every A ∈ V, we write Z(A) to denote the set of central elements of A.
- $\vec{e} \diamond_A \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta^{A}_{\vec{0},\vec{e}}$ and $\theta^{A}_{\vec{1},\vec{e}}$ for the unique pair of complementary factor congruences satisfying $\vec{e}/\theta^{A}_{\vec{0},\vec{e}} = \vec{0}/\theta^{A}_{\vec{0},\vec{e}}$ and

- For every A ∈ V, we write Z(A) to denote the set of central elements of A.
- $\vec{e} \diamond_A \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta^{A}_{\vec{0},\vec{e}}$ and $\theta^{A}_{\vec{1},\vec{e}}$ for the unique pair of complementary factor congruences satisfying $\vec{e}/\theta^{A}_{\vec{0},\vec{e}} = \vec{0}/\theta^{A}_{\vec{0},\vec{e}}$ and $\vec{e}/\theta^{A}_{\vec{1},\vec{e}} = \vec{1}/\theta^{A}_{\vec{1},\vec{e}}$.

Let ${\cal V}$ be a variety with $\vec{0}$ and $\vec{1}$ and suppose that it has BFC.

- For every A ∈ V, we write Z(A) to denote the set of central elements of A.
- $\vec{e} \diamond_A \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta^{A}_{\vec{0},\vec{e}}$ and $\theta^{A}_{\vec{1},\vec{e}}$ for the unique pair of complementary factor congruences satisfying $\vec{e}/\theta^{A}_{\vec{0},\vec{e}} = \vec{0}/\theta^{A}_{\vec{0},\vec{e}}$ and $\vec{e}/\theta^{A}_{\vec{1},\vec{e}} = \vec{1}/\theta^{A}_{\vec{1},\vec{e}}$.

Theorem

Let \mathcal{V} be a variety with BFC. The map $g : Z(A) \to FC(A)$, defined by $g(\vec{e}) = \theta^{A}_{\vec{0},\vec{e}}$ is a bijection and its inverse $h : FC(A) \to Z(A)$ is defined by $h(\theta) = \vec{e}$, where \vec{e} is the only $\vec{e} \in A^{N}$ such that $\vec{e}/\theta = \vec{0}/\theta$ and $\vec{e}/\theta^{*} = \vec{1}/\theta^{*}$.

Let ${\cal V}$ be a variety with $\vec{0}$ and $\vec{1}$ and suppose that it has BFC.

- For every A ∈ V, we write Z(A) to denote the set of central elements of A.
- $\vec{e} \diamond_A \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta^{A}_{\vec{0},\vec{e}}$ and $\theta^{A}_{\vec{1},\vec{e}}$ for the unique pair of complementary factor congruences satisfying $\vec{e}/\theta^{A}_{\vec{0},\vec{e}} = \vec{0}/\theta^{A}_{\vec{0},\vec{e}}$ and $\vec{e}/\theta^{A}_{\vec{1},\vec{e}} = \vec{1}/\theta^{A}_{\vec{1},\vec{e}}$.

 $\mathbf{Z}(\mathsf{A}) = (Z(\mathsf{A}), \lor_{\mathsf{A}}, \land_{\mathsf{A}}, \overset{c_{\mathsf{A}}}{,}, \vec{0}, \vec{1}) \text{ is a Boolean algebra which is isomorphic to } (FC(\mathsf{A}), \lor, \cap, ^*, \Delta^{\mathsf{A}}, \nabla^{\mathsf{A}}).$

Let \mathcal{V} be a variety with BFC. We say that \mathcal{V} is stable by complements if for every homomorphism $h : A \to B$ and $\vec{e}, \vec{f} \in Z(A)$:

Let \mathcal{V} be a variety with BFC. We say that \mathcal{V} is stable by complements if for every homomorphism $h : A \to B$ and $\vec{e}, \vec{f} \in Z(A)$:

$$\vec{e} \diamond_{\mathsf{A}} \vec{f} \Rightarrow h(\vec{e}) \diamond_{\mathsf{B}} h(\vec{f}).$$

Let \mathcal{V} be a variety with BFC. We say that \mathcal{V} is stable by complements if for every homomorphism $h : A \to B$ and $\vec{e}, \vec{f} \in Z(A)$:

$$\vec{e} \diamond_{\mathsf{A}} \vec{f} \Rightarrow h(\vec{e}) \diamond_{\mathsf{B}} h(\vec{f}).$$

Warning !

There are varieties with BFC with homomorphisms such that:

Let \mathcal{V} be a variety with BFC. We say that \mathcal{V} is stable by complements if for every homomorphism $h : A \to B$ and $\vec{e}, \vec{f} \in Z(A)$:

$$\vec{e} \diamond_{\mathsf{A}} \vec{f} \Rightarrow h(\vec{e}) \diamond_{\mathsf{B}} h(\vec{f}).$$

Warning !

There are varieties with BFC with homomorphisms such that:

(1) preserve central elements but does not preserve complementary central elements,

Let \mathcal{V} be a variety with BFC. We say that \mathcal{V} is stable by complements if for every homomorphism $h : A \to B$ and $\vec{e}, \vec{f} \in Z(A)$:

$$\vec{e} \diamond_{\mathsf{A}} \vec{f} \Rightarrow h(\vec{e}) \diamond_{\mathsf{B}} h(\vec{f}).$$

Warning !

There are varieties with BFC with homomorphisms such that:

- (1) preserve central elements but does not preserve complementary central elements,
- (2) does not preserve nor central elements nor complementary central elements.

Let \mathcal{V} be a variety with BFC. We say that \mathcal{V} is stable by complements if for every homomorphism $h : A \to B$ and $\vec{e}, \vec{f} \in Z(A)$:

$$\vec{e} \diamond_{\mathsf{A}} \vec{f} \Rightarrow h(\vec{e}) \diamond_{\mathsf{B}} h(\vec{f}).$$

Warning !

There are varieties with BFC with homomorphisms such that:

- (1) preserve central elements but does not preserve complementary central elements,
- (2) does not preserve nor central elements nor complementary central elements.

W. J. Zuluaga Botero Coextensive varieties and the Gaeta topos.

(1) $\mathcal{S}_{0,1}^{\vee}$: Bounded join semilattices.

(1) $S_{0,1}^{\vee}$: Bounded join semilattices. • $\varphi(x, y, z) = (x \lor z \approx y \lor z)$.

- (1) $\mathcal{S}_{0,1}^{\vee}$: Bounded join semilattices.
 - $\varphi(x, y, z) = (x \lor z \approx y \lor z).$
 - $A = 2 \times 2$.

- (1) $\mathcal{S}_{0,1}^{\vee}$: Bounded join semilattices.
 - $\varphi(x, y, z) = (x \lor z \approx y \lor z).$
 - $A = 2 \times 2$.
 - Z(A) = A.

- (1) $\mathcal{S}_{0,1}^{\vee}$: Bounded join semilattices.
 - $\varphi(x, y, z) = (x \lor z \approx y \lor z).$
 - $A = 2 \times 2$.
 - Z(A) = A.
 - $\alpha : \mathsf{A} \to \mathsf{A}$,

- (1) $\mathcal{S}_{0,1}^{\vee}$: Bounded join semilattices.
 - $\varphi(x, y, z) = (x \lor z \approx y \lor z).$
 - $A = 2 \times 2$.
 - Z(A) = A.
 - $\alpha : \mathsf{A} \to \mathsf{A}$,

$$egin{array}{rll} (1,1)&\mapsto&(1,1)\ (0,0)&\mapsto&(0,0)\ (0,1)&\mapsto&(1,1)\ (1,0)&\mapsto&(1,1) \end{array}$$
- (1) $\mathcal{S}_{0,1}^{\vee}$: Bounded join semilattices.
 - $\varphi(x, y, z) = (x \lor z \approx y \lor z).$
 - $A = 2 \times 2$.
 - Z(A) = A.
 - $\alpha : A \rightarrow A$,

 α preserves central elements but does not preserve complementary central elements.

W. J. Zuluaga Botero Coextensive varieties and the Gaeta topos.

(2) \mathcal{M} : Bounded lattices.

(2) \mathcal{M} : Bounded lattices.

$\bullet \ \mathcal{M}$ has BFC.

- (2) \mathcal{M} : Bounded lattices.
 - $\bullet \ \mathcal{M}$ has BFC.
 - $\bullet~$ If C $= 2 \times 2$ and D is

- (2) \mathcal{M} : Bounded lattices.
 - $\bullet \ \mathcal{M}$ has BFC.
 - $\bullet~$ If $C=2\times2~and~D$ is

- (2) \mathcal{M} : Bounded lattices.
 - $\bullet \ \mathcal{M}$ has BFC.
 - $\bullet~$ If C $= 2 \times 2$ and D is

- (2) \mathcal{M} : Bounded lattices.
 - \mathcal{M} has BFC.
 - If $C=2\times 2$ and D is

- $C \leq D$.
- The inclusion does not preserve nor central elements nor complementary central elements.

- (2) \mathcal{M} : Bounded lattices.
 - \mathcal{M} has BFC.
 - If $C=2\times 2$ and D is

- $C \leq D$.
- The inclusion does not preserve nor central elements nor complementary central elements.

A category with finite products C is called coextensive if for each pair of objects X, Y of C the canonical functor

$$imes : X/\mathsf{C} imes Y/\mathsf{C} o (X imes Y)/\mathsf{C}$$

is an equivalence.

A category with finite products C is called coextensive if for each pair of objects X, Y of C the canonical functor

$$\times : X/\mathsf{C} \times Y/\mathsf{C} \to (X \times Y)/\mathsf{C}$$

is an equivalence.

A category with finite products C is called coextensive if for each pair of objects X, Y of C the canonical functor

$$\times : X/\mathsf{C} \times Y/\mathsf{C} \to (X \times Y)/\mathsf{C}$$

is an equivalence.

Examples

• Rigs, Real rigs, Integral rigs,

A category with finite products C is called coextensive if for each pair of objects X, Y of C the canonical functor

$$\times : X/\mathsf{C} \times Y/\mathsf{C} \to (X \times Y)/\mathsf{C}$$

is an equivalence.

- Rigs, Real rigs, Integral rigs,
- Commutative rings with unit,

A category with finite products C is called coextensive if for each pair of objects X, Y of C the canonical functor

$$\times : X/\mathsf{C} \times Y/\mathsf{C} \to (X \times Y)/\mathsf{C}$$

is an equivalence.

- Rigs, Real rigs, Integral rigs,
- Commutative rings with unit,
- Bounded distributive lattices,

A category with finite products C is called coextensive if for each pair of objects X, Y of C the canonical functor

$$\times : X/\mathsf{C} \times Y/\mathsf{C} \to (X \times Y)/\mathsf{C}$$

is an equivalence.

- Rigs, Real rigs, Integral rigs,
- Commutative rings with unit,
- Bounded distributive lattices,
- Residuated integral rigs, integral, bounded and commutative residuated lattices, etc.

A category with finite products C is called coextensive if for each pair of objects X, Y of C the canonical functor

$$\times : X/\mathsf{C} \times Y/\mathsf{C} \to (X \times Y)/\mathsf{C}$$

is an equivalence.

- Rigs, Real rigs, Integral rigs,
- Commutative rings with unit,
- Bounded distributive lattices,
- Residuated integral rigs, integral, bounded and commutative residuated lattices, etc.

$$U(x, y, \vec{0}, \vec{1}) = x$$
$$U(x, y, \vec{1}, \vec{0}) = y.$$

$$U(x, y, \vec{0}, \vec{1}) = x$$
$$U(x, y, \vec{1}, \vec{0}) = y.$$

Examples

• Rigs and Rings with unit: $U(x, y, z, w) = (x \cdot w) + (y \cdot z)$, 0, 1.

$$U(x, y, \vec{0}, \vec{1}) = x$$
$$U(x, y, \vec{1}, \vec{0}) = y.$$

- Rigs and Rings with unit: $U(x, y, z, w) = (x \cdot w) + (y \cdot z)$, 0, 1.
- Bounded lattices: $U(x, y, z, w) = (x \land w) \lor (y \land z)$, 0, 1.

$$U(x, y, \vec{0}, \vec{1}) = x$$
$$U(x, y, \vec{1}, \vec{0}) = y.$$

- Rigs and Rings with unit: $U(x, y, z, w) = (x \cdot w) + (y \cdot z)$, 0, 1.
- Bounded lattices: $U(x, y, z, w) = (x \land w) \lor (y \land z)$, 0, 1.
- Church varieties: Varieties with a term u(x, y, z) and 0-ary terms 0 and 1 satisfying u(x, y, 0) = x and u(x, y, 1) = y.

$$U(x, y, \vec{0}, \vec{1}) = x$$
$$U(x, y, \vec{1}, \vec{0}) = y.$$

- Rigs and Rings with unit: $U(x, y, z, w) = (x \cdot w) + (y \cdot z)$, 0, 1.
- Bounded lattices: $U(x, y, z, w) = (x \land w) \lor (y \land z)$, 0, 1.
- Church varieties: Varieties with a term u(x, y, z) and 0-ary terms 0 and 1 satisfying u(x, y, 0) = x and u(x, y, 1) = y.
 - Boolean algebras: $u(x, y, z) = (x \lor z) \land (y \lor z')$, 0, 1.

$$U(x, y, \vec{0}, \vec{1}) = x$$
$$U(x, y, \vec{1}, \vec{0}) = y.$$

- Rigs and Rings with unit: $U(x, y, z, w) = (x \cdot w) + (y \cdot z)$, 0, 1.
- Bounded lattices: $U(x, y, z, w) = (x \land w) \lor (y \land z)$, 0, 1.
- Church varieties: Varieties with a term u(x, y, z) and 0-ary terms 0 and 1 satisfying u(x, y, 0) = x and u(x, y, 1) = y.
 - Boolean algebras: $u(x, y, z) = (x \lor z) \land (y \lor z')$, 0, 1.
 - Integral, bounded and commutative residuated lattices: u(x, y, z) = (x ∨ z) ∧ (y ∨ (z → 0)), 0, 1.

$$U(x, y, \vec{0}, \vec{1}) = x$$
$$U(x, y, \vec{1}, \vec{0}) = y.$$

- Rigs and Rings with unit: $U(x, y, z, w) = (x \cdot w) + (y \cdot z)$, 0, 1.
- Bounded lattices: $U(x, y, z, w) = (x \land w) \lor (y \land z)$, 0, 1.
- Church varieties: Varieties with a term u(x, y, z) and 0-ary terms 0 and 1 satisfying u(x, y, 0) = x and u(x, y, 1) = y.
 - Boolean algebras: $u(x, y, z) = (x \lor z) \land (y \lor z')$, 0, 1.
 - Integral, bounded and commutative residuated lattices: u(x, y, z) = (x ∨ z) ∧ (y ∨ (z → 0)), 0, 1.

Let \mathcal{V} a variety. T.F.E:

W. J. Zuluaga Botero Coextensive varieties and the Gaeta topos.

Let \mathcal{V} a variety. T.F.E:

• \mathcal{V} is coextensive.

Let \mathcal{V} a variety. T.F.E:

- V is coextensive.
- Solution V is a Pierce variety in which the relation e or of or of the equationally definable.

Let V a variety. T.F.E:

- \mathcal{V} is coextensive.
- ② V is a Pierce variety in which the relation e o_A f is equationally definable.
- \bigcirc \mathcal{V} is a Pierce variety stable by complements.

Let \mathcal{V} a variety. T.F.E:

- V is coextensive.
- **③** \mathcal{V} is a Pierce variety stable by complements.

$$\sigma(\vec{x}, \vec{y}) =$$

Let \mathcal{V} a variety. T.F.E:

- V is coextensive.
- **③** \mathcal{V} is a Pierce variety stable by complements.

$$\sigma(\vec{x}, \vec{y}) = \bigwedge_{i=1}^{n} p_i(\vec{x}, \vec{y}) = q_i(\vec{x}, \vec{y}) \text{ defines } \vec{e} \diamond \vec{f} \text{ in } \mathcal{V}.$$

- Let \mathcal{V} a variety. T.F.E:
 - **1** \mathcal{V} is coextensive.
 - **2** \mathcal{V} is a Pierce variety in which the relation $\vec{e} \diamond_A \vec{f}$ is equationally definable.
 - \bigcirc \mathcal{V} is a Pierce variety stable by complements.

An algebra A in $\ensuremath{\mathcal{V}}$ is indecomposable if and only if the following sequents hold:

- Let \mathcal{V} a variety. T.F.E:
 - **1** \mathcal{V} is coextensive.
 - ② V is a Pierce variety in which the relation e ↔_A f is equationally definable.
 - \bigcirc \mathcal{V} is a Pierce variety stable by complements.

An algebra A in $\ensuremath{\mathcal{V}}$ is indecomposable if and only if the following sequents hold:

 $0=1\vdash\perp$

- Let \mathcal{V} a variety. T.F.E:
 - \mathcal{V} is coextensive.
 - ② V is a Pierce variety in which the relation e ↔_A f is equationally definable.
 - \bigcirc \mathcal{V} is a Pierce variety stable by complements.

An algebra A in \mathcal{V} is indecomposable if and only if the following sequents hold:

$$0=1Dashot$$

$$\sigma(ec{x},ec{y})dash_{ec{x},ec{y}}(ec{x}=ec{0}\wedgeec{y}=ec{1})ee(ec{x}=ec{1}\wedgeec{y}=ec{0}).$$

- Let \mathcal{V} a variety. T.F.E:
 - \mathcal{V} is coextensive.
 - ② V is a Pierce variety in which the relation e o_A f is equationally definable.
 - \bigcirc \mathcal{V} is a Pierce variety stable by complements.

Definition

Let E be a topos. A V-model X of E is V-indecomposable if the sequents

 $0=1\vdash\perp$

$$\sigma(\vec{x}, \vec{y}) \vdash_{\vec{x}, \vec{y}} (\vec{x} = \vec{0} \land \vec{y} = \vec{1}) \lor (\vec{x} = \vec{1} \land \vec{y} = \vec{0})$$

hold in the internal logic of E.

- Let \mathcal{V} a variety. T.F.E:
 - **1** \mathcal{V} is coextensive.
 - ② V is a Pierce variety in which the relation e o_A f is equationally definable.
 - \bigcirc \mathcal{V} is a Pierce variety stable by complements.

Proposition

Let E be a topos. A \mathcal{V} -model X of E is \mathcal{V} -indecomposable iff the diagram below

$$0 \xrightarrow{!} 1 \xrightarrow{\vec{1}} X^n$$

is an equalizer in E, and the morphism $\alpha : 1 + 1 \rightarrow [\sigma(\vec{x}, \vec{y})]_X$ is an isomorphism.

The Gaeta topos and fp-coextensive varieties

Definition

A coextensive variety ${\cal V}$ is said to be fp-coextensive if ${\sf Mod}_{\sf fp}({\cal V})$ is coextensive.
The Gaeta topos and fp-coextensive varieties

Definition

A coextensive variety ${\cal V}$ is said to be fp-coextensive if ${\sf Mod}_{\sf fp}({\cal V})$ is coextensive.

Theorem

Let \mathcal{V} be a coextensive variety. Then \mathcal{V} is fp-coextensive if and only if binary products of finitely generated free algebras of \mathcal{V} are finitely presented.

The Gaeta topos and fp-coextensive varieties

Definition

A coextensive variety ${\cal V}$ is said to be fp-coextensive if ${\sf Mod}_{\sf fp}({\cal V})$ is coextensive.

Theorem

Let \mathcal{V} be a coextensive variety. Then \mathcal{V} is fp-coextensive if and only if binary products of finitely generated free algebras of \mathcal{V} are finitely presented.

Proposition

Let V be a coextensive variety of finite type. If V is locally finite then it is fp-coextensive.

The Gaeta topos and fp-coextensive varieties

Let C be a small extensive category and let X be an object of C.

 $\{f_i : X_i \to X \mid i \in I\} \in K_{\mathcal{G}}(X) \text{ iff } I < \omega \text{ and } [f_i] : \Sigma X_i \to X \text{ is an iso.}$

 $\{f_i : X_i \to X \mid i \in I\} \in K_{\mathcal{G}}(X) \text{ iff } I < \omega \text{ and } [f_i] : \Sigma X_i \to X \text{ is an iso.}$

 $Shv(C, J_{\mathcal{G}})$

 $\{f_i : X_i \to X \mid i \in I\} \in K_{\mathcal{G}}(X) \text{ iff } I < \omega \text{ and } [f_i] : \Sigma X_i \to X \text{ is an iso.}$

 $\mathsf{Shv}(\mathsf{C}, J_{\mathcal{G}}) \Longrightarrow \underline{\mathsf{Gaeta topos}}$

 $\{f_i : X_i \to X \mid i \in I\} \in K_{\mathcal{G}}(X) \text{ iff } I < \omega \text{ and } [f_i] : \Sigma X_i \to X \text{ is an iso.}$

 $\mathsf{Shv}(\mathsf{C}, J_{\mathcal{G}}) \Longrightarrow \underline{\mathsf{Gaeta topos}}$

If \mathcal{V} is an fp-coextensive variety

 $\{f_i : X_i \to X \mid i \in I\} \in K_{\mathcal{G}}(X) \text{ iff } I < \omega \text{ and } [f_i] : \Sigma X_i \to X \text{ is an iso.}$

 $\mathsf{Shv}(\mathsf{C}, J_{\mathcal{G}}) \Longrightarrow \underline{\mathsf{Gaeta topos}}$

If \mathcal{V} is an fp-coextensive variety

 $\mathcal{G}(\mathcal{V}) = \mathsf{Shv}(\mathsf{Mod}_{\mathsf{fp}}(\mathcal{V})^{\mathsf{op}}, J_{\mathcal{G}})$

Theorem

Let ${\mathcal V}$ be an fp-coextensive variety. Then, the following are equivalent:

Theorem

Let \mathcal{V} be an fp-coextensive variety. Then, the following are equivalent: (1) $\mathcal{G}(\mathcal{V})$ is a classifying topos for \mathcal{V} -indecomposable objects.

Theorem

Let \mathcal{V} be an fp-coextensive variety. Then, the following are equivalent: (1) $\mathcal{L}(\mathcal{V})$ is a closely include the line of the second sec

- (1) $\mathcal{G}(\mathcal{V})$ is a classifying topos for \mathcal{V} -indecomposable objects.
- (2) $F_{\mathcal{V}}(x)$ is indecomposable.

•
$$U(x, y, z, w) = (x \lor z) \land (y \lor w).$$

- $U(x, y, z, w) = (x \lor z) \land (y \lor w).$
- $\sigma(x,y) = (x \land y = 0) \land (x \lor y = 1).$
- \mathcal{DL}_{01} is fp-coextensive.

- $U(x, y, z, w) = (x \lor z) \land (y \lor w).$
- $\sigma(x,y) = (x \land y = 0) \land (x \lor y = 1).$
- \mathcal{DL}_{01} is fp-coextensive. (it is locally finite)

- $U(x, y, z, w) = (x \lor z) \land (y \lor w).$
- $\sigma(x, y) = (x \land y = 0) \land (x \lor y = 1).$
- \mathcal{DL}_{01} is fp-coextensive. (it is locally finite)

•
$$U(x, y, z, w) = (x \lor z) \land (y \lor w).$$

•
$$\sigma(x,y) = (x \land y = 0) \land (x \lor y = 1).$$

• \mathcal{DL}_{01} is fp-coextensive. (it is locally finite)

 $\therefore \mathcal{G}(\mathcal{DL}_{01})$ classifies \mathcal{DL}_{01} -indecomposable objects.

$$(1) x \cdot 0 = 0.$$

(1)
$$x \cdot 0 = 0$$
.
(2) $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$.

(1)
$$x \cdot 0 = 0$$
.
(2) $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$.
(3) $1 + x = x$.

(1)
$$x \cdot 0 = 0$$
.
(2) $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$.
(3) $1 + x = x$.

•
$$U(x, y, z, w) = (x + z) \cdot (y + w).$$

- $U(x, y, z, w) = (x + z) \cdot (y + w).$
- $\sigma(x, y) = (x \cdot y = 0) \land (x + y = 1).$
- \mathcal{RN} is fp-coextensive ([25]).

- $U(x, y, z, w) = (x + z) \cdot (y + w).$
- $\sigma(x, y) = (x \cdot y = 0) \land (x + y = 1).$
- \mathcal{RN} is fp-coextensive ([25]).
- $F_{RN}(x)$: $0 < ... < x^n < ... < x^2 < x < x^0 = 1$.

- $U(x, y, z, w) = (x + z) \cdot (y + w).$
- $\sigma(x, y) = (x \cdot y = 0) \land (x + y = 1).$
- \mathcal{RN} is fp-coextensive ([25]).
- $F_{\mathcal{RN}}(x)$: $0 < ... < x^n < ... < x^2 < x < x^0 = 1$.
- $\therefore \mathcal{G}(\mathcal{RN})$ classifies \mathcal{RN} -indecomposable objects.

W. J. Zuluaga Botero Coextensive varieties and the Gaeta topos.

•
$$U(x, y, z, w) = (x + z) \cdot (y + w).$$

W. J. Zuluaga Botero Coextensive varieties and the Gaeta topos.

- $U(x, y, z, w) = (x + z) \cdot (y + w).$
- $\sigma(x, y) = (x \cdot y = 0) \land (x + y = 1).$
- \mathcal{R} is fp-coextensive.

- $U(x, y, z, w) = (x + z) \cdot (y + w).$
- $\sigma(x, y) = (x \cdot y = 0) \land (x + y = 1).$
- \mathcal{R} is fp-coextensive. (floklore)

- $U(x, y, z, w) = (x + z) \cdot (y + w).$
- $\sigma(x, y) = (x \cdot y = 0) \land (x + y = 1).$
- \mathcal{R} is fp-coextensive. (floklore)
- $F_{\mathcal{R}}(x) = Z[x]$ is indecomposable.

- $U(x, y, z, w) = (x + z) \cdot (y + w).$
- $\sigma(x, y) = (x \cdot y = 0) \land (x + y = 1).$
- \mathcal{R} is fp-coextensive. (floklore)
- $F_{\mathcal{R}}(x) = Z[x]$ is indecomposable.
- $\therefore \mathcal{G}(\mathcal{R})$ classifies \mathcal{R} -indecomposable objects.

Applications: Heyting algebras
•
$$U(x, y, z, w) = (z \wedge y) \vee (\neg z \wedge x).$$

•
$$U(x, y, z, w) = (z \land y) \lor (\neg z \land x).$$

•
$$\sigma(x,y) = (x \land y = 0) \land (x \lor y = 1).$$

- $U(x, y, z, w) = (z \land y) \lor (\neg z \land x).$
- $\sigma(x,y) = (x \land y = 0) \land (x \lor y = 1).$
- \mathcal{H} is fp-coextensive. ([17])

- $U(x, y, z, w) = (z \land y) \lor (\neg z \land x).$
- $\sigma(x,y) = (x \land y = 0) \land (x \lor y = 1).$
- \mathcal{H} is fp-coextensive. ([17])
- $F_{\mathcal{H}}(x)$ is indecomposable. ([9])

- $U(x, y, z, w) = (z \land y) \lor (\neg z \land x).$
- $\sigma(x,y) = (x \land y = 0) \land (x \lor y = 1).$
- \mathcal{H} is fp-coextensive. ([17])
- $F_{\mathcal{H}}(x)$ is indecomposable. ([9])
- $\therefore \mathcal{G}(\mathcal{H})$ classifies \mathcal{H} -indecomposable objects.

$$\bigcirc \neg \neg x = x.$$

$$a x \oplus \neg 0 = \neg 0.$$

$$\bigcirc \neg \neg x = x.$$

$$2 x \oplus \neg 0 = \neg 0.$$

An MV-algebra is an algebra $(A, \oplus, \neg, 0)$ of type (2, 1, 0) such that $(A, \oplus, 0)$ is a commutative monoid such that the following equations hold:

$$x + y = \neg(\neg x \oplus y) \oplus y$$
 $1 = \neg 0$ $x \cdot y = \neg(\neg x \oplus \neg y)$

•
$$U(x, y, z, w) = (x + z) \cdot (y + w).$$

- $U(x, y, z, w) = (x + z) \cdot (y + w).$
- $\sigma(x, y) = (x + y = 0) \land (x \cdot y = 1).$
- \mathcal{MV} is fp-coextensive. ([24])

- $U(x, y, z, w) = (x + z) \cdot (y + w).$
- $\sigma(x, y) = (x + y = 0) \land (x \cdot y = 1).$
- \mathcal{MV} is fp-coextensive. ([24])
- $F_{MV}(x)$ is indecomposable. ([13])

- $U(x, y, z, w) = (x + z) \cdot (y + w).$
- $\sigma(x, y) = (x + y = 0) \land (x \cdot y = 1).$
- \mathcal{MV} is fp-coextensive. ([24])
- $F_{MV}(x)$ is indecomposable. ([13])
- $\therefore \mathcal{G}(\mathcal{MV})$ classifies \mathcal{MV} -indecomposable objects.

$$(A, \land, \lor, \rightarrow, 0, 1) \in \mathcal{H}.$$

$$(A, \land, \lor, \rightarrow, 0, 1) \in \mathcal{H}.$$

$$(x \to y) \lor (y \to x) = 1.$$

$$(A, \land, \lor, \rightarrow, 0, 1) \in \mathcal{H}.$$

$$(x \to y) \lor (y \to x) = 1.$$

 $\bullet \ \mathcal{PH}$ is coextensive.

• \mathcal{PH} is coextensive. (proof: similar to the proof for \mathcal{H})

- \mathcal{PH} is coextensive. (proof: similar to the proof for \mathcal{H})
- \mathcal{PH} is fp-coextensive.

- \mathcal{PH} is coextensive. (proof: similar to the proof for \mathcal{H})
- \mathcal{PH} is fp-coextensive. (it is locally finite)

- \mathcal{PH} is coextensive. (proof: similar to the proof for \mathcal{H})
- \mathcal{PH} is fp-coextensive. (it is locally finite)
- $F_{\mathcal{PH}}(x)$ is decomposable.

- \mathcal{PH} is coextensive. (proof: similar to the proof for \mathcal{H})
- \mathcal{PH} is fp-coextensive. (it is locally finite)
- $F_{\mathcal{PH}}(x)$ is decomposable. $(\neg x \lor \neg \neg x = 1 \text{ and } \neg x \land \neg \neg x = 0)$

- \mathcal{PH} is coextensive. (proof: similar to the proof for \mathcal{H})
- \mathcal{PH} is fp-coextensive. (it is locally finite)
- $F_{\mathcal{PH}}(x)$ is decomposable. $(\neg x \lor \neg \neg x = 1 \text{ and } \neg x \land \neg \neg x = 0)$

 $\therefore \mathcal{G}(\mathcal{PH})$ does not classifies \mathcal{MV} -indecomposable objects.

Thanks !

W. J. Zuluaga Botero Coextensive varieties and the Gaeta topos.

References I

- 📎 Badano, M., Vaggione, D.: Equational definability of (complementary) central elements. International Journal of Algebra and Computation 26, 509-532 (2016)
- Broodryk, D.N.: Characterization of left coextensive varieties of universal algebras. Theory and Applications of Categories **34**, No. 32, 1036–1038 (2019)
- Broodryk, D.N.: Characterization of coextensive varieties of universal algebras (2020, preprint) arXiv:2008.03474 [math.CT]

Broodryk, D.N.: Characterization of coextensive varieties of universal algebras II (2021, preprint) arXiv:2104.12188 [math.CT]

References II

Networks, S., Sankappanavar, H.P.: A course in universal algebra. Graduate Texts Math, 78 (1981)

- 📎 Campercholi, M., Vaggione, D.: Implicit definition of the quaternary discriminator. Algebra Universalis 68 No. 1, 1–16 (2012)
- 🛸 Carboni A., Lack, S., Walters, R.F.C.: Introduction to extensive and distributive categories. Journal of Pure and Applied Algebra Vol. 84, Issue 2, 145–158 (1993)

🛸 Carboni, A., Pedicchio, M.C., Rosický, J.: Syntactic characterizations of various classes of locally presentable categories. Journal of Pure and Applied Algebra Vol. 161, Issues 1-2, 65-90 (2001)

References III

📎 Castaño D., J. P. Díaz Varela, Torrens A., Indecomposability of free algebras in some subvarieties of residuated lattices and their bounded subreducts, Soft Computing 15 (7) (2011) 1449-1455

📎 Castiglioni, J. L., Menni, M., Zuluaga Botero, W.J.: A representation theorem for integral rigs and its applications to residuated lattices. Journal of Pure and Applied Algebra 220, 3533-3566 (2016)

Nang, C.C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88, 467-490 (1958)

📎 Chang, C.C., Jónsson, B., Tarski, A.: Refinement properties for relational structures. Fund. Math. 54, 249-281 (1964)

References IV

- 📎 Cignoli R., Torrens A., Hájek basic fuzzy logic and Łukasiewicz infinite-valued logic, Archive for Mathematical Logic 42 (4) (2003) 361–370.
- Comer, S.: Representations by algebras of sections over Boolean spaces. Pacific Journal of Mathematics 38, No. 1, 29 - 38(1971)
- Fraser, G.A., Horn A.: Congruence relations in direct products. Proc. Amer. Math. 26, 390–394 (1970)

📎 Galatos, N., Jipsen P., Kowalski, T., Ono, H.: Residuated Lattices: An algebraic glimpse at logics without contraction, Elsevier (2007)

References V

📎 S. Ghilardi, M. Zawadowski, A sheaf representation and duality for finitely presented heyting algebras, The Journal of Symbolic Logic 60 (3) (1995) 595 911-939.

📎 Hájek, P.: Metamathematics of Fuzzy Logic, Vol. 4. Springer Science & Business Media (2013)

Noefnagel, M.: M-coextensive objects and the strict 📎 refinement property. Journal of Pure and Applied Algebra Vol. **224**, 106381 (2020)

Noebel, A.: Sheaves of algebras over Boolean spaces. Birkhäuser (2012)

References VI

Lawvere, F.W.: Some thoughts on the future of category theory. In: Carboni A., Pedicchio M.C., Rosolini G. (eds) Category Theory. Lecture Notes in Mathematics, vol 1488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0084208

Manzonetto, G., Salibra, A: Applying universal algebra to lambda calculus. Journal of Logic and Computation 20, 877–915 (2010)

Manzonetto, G., Salibra, A: From λ-calculus to universal algebra and back. In: Ochmański E., Tyszkiewicz J. (eds) Mathematical Foundations of Computer Science 2008. MFCS 2008. Lecture Notes in Computer Science, vol 5162. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-85238-4_39

References VII

🛸 Marra V., Spada L., Duality, projectivity, and unification in lukasiewicz logic and mv-algebras, Annals of Pure and Applied logic 164 (3) (2013) 192–210.

- N. Menni, A basis theorem for 2-rigs and rig geometry, Cah. Topologie Géom. Différ. Catégoriques 62 (4) (2021) 451-490.
- 📚 Rosenberg, I.: About functional completeness in multi-valued logics. Rozpr. CSAV Rada Mat. Pfir. Ved 80, 3-93 (1970) (German)

📎 Salibra, A., Ledda, A., Paoli, F., et al.: Boolean-like algebras. Algebra Universalis 69, 113–138 (2013)

No. Sanchez Terraf P., Vaggione, D.: Varieties with definable factor congruences. Trans. Amer. Math. Soc. 361, 5061-5088 (2009)
References VIII

嗪 Schanuel, S.H.: Negative sets have Euler characteristic and dimension. In: Carboni A., Pedicchio M.C., Rosolini G. (eds) Category Theory. Lecture Notes in Mathematics, vol 1488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0084232

Naggione, D.: Varieties in which the Pierce Stalks are Directly Indecomposable. Journal of Algebra 184, 424-434 (1996)

Vaggione, D.: Varieties of shells. Algebra Universalis 36. 483-487 (1996)

Solution Vaggione, D.: \mathcal{V} with factorable congruences and $\mathcal{V} = I\Gamma^a(\mathcal{V}_{DI})$ imply \mathcal{V} is a discriminator variety. Acta Sci. Math. **62**, 359–368 (1996)

References IX

Naggione, D.: Central Elements in Varieties with the Fraser-Horn Property. Advances in Mathematics Vol. 148 Issue 2, 193-202 (1999)

Vaggione, D.: Characterization of discriminator varieties. Proceedings of the American Mathematical Society Vol. 129 No. 3, 663–666 (2001)

📡 Zuluaga Botero, W.J. Coextensive varieties via central elements. Algebra Univers. 82, 50 https://doi.org/10.1007/s00012-021-00745-2 (2021)

Zuluaga Botero, W.J.: Representation by sheaves of riRigs. PhD Thesis, Universidad Nacional de La Plata (2016) (Spanish) https://doi.org/10.35537/10915/54115