Coextensive varieties and the Gaeta topos.

W. J. Zuluaga Botero

Departamento de Matemática,
Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil-Argentina

TACL 2021-22
Coímbra, June 2022.

Preliminaries

Let \mathcal{V} be a variety with at least a constant symbol:

Preliminaries

Let \mathcal{V} be a variety with at least a constant symbol:

- \mathcal{V} is a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ if there are 0 -ary terms 0_{i} and 1_{i}, with $1 \leq i \leq N$ such that $\mathcal{V} \models \bigwedge_{i=1}^{N} 0_{i} \approx 1_{i} \rightarrow x \approx y$.

Preliminaries

Let \mathcal{V} be a variety with at least a constant symbol:

- \mathcal{V} is a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ if there are 0 -ary terms 0_{i} and 1_{i}, with $1 \leq i \leq N$ such that $\mathcal{V} \vDash \bigwedge_{i=1}^{N} 0_{i} \approx 1_{i} \rightarrow x \approx y$.
- If $\mathrm{A} \in \mathcal{V}$ then we say that $\vec{e} \in A^{N}$ is a central element of A if there exists an isomorphism $\tau: \mathrm{A} \rightarrow \mathrm{A}_{1} \times \mathrm{A}_{2}$, such that $\tau\left(e_{i}\right)=\left(0_{i}, 1_{i}\right), 1 \leq i \leq N$.

Preliminaries

Let \mathcal{V} be a variety with at least a constant symbol:

- \mathcal{V} is a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ if there are 0 -ary terms 0_{i} and 1_{i}, with $1 \leq i \leq N$ such that $\mathcal{V} \models \bigwedge_{i=1}^{N} 0_{i} \approx 1_{i} \rightarrow x \approx y$.
- If $\mathrm{A} \in \mathcal{V}$ then we say that $\vec{e} \in A^{N}$ is a central element of A if there exists an isomorphism $\tau: \mathrm{A} \rightarrow \mathrm{A}_{1} \times \mathrm{A}_{2}$, such that $\tau\left(e_{i}\right)=\left(0_{i}, 1_{i}\right), 1 \leq i \leq N$.
- We say that \vec{e} and \vec{f} are a pair of complementary central elements of A if there exists an isomorphism $\tau: \mathrm{A} \rightarrow \mathrm{A}_{1} \times \mathrm{A}_{2}$ such that $\tau\left(e_{i}\right)=\left(0_{i}, 1_{i}\right)$ and $\tau\left(f_{i}\right)=\left(1_{i}, 0_{i}\right), 1 \leq i \leq N$.

Preliminaries

Let \mathcal{V} be a variety with at least a constant symbol:

- \mathcal{V} is a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ if there are 0 -ary terms 0_{i} and 1_{i}, with $1 \leq i \leq N$ such that $\mathcal{V} \models \bigwedge_{i=1}^{N} 0_{i} \approx 1_{i} \rightarrow x \approx y$.
- If $\mathrm{A} \in \mathcal{V}$ then we say that $\vec{e} \in A^{N}$ is a central element of A if there exists an isomorphism $\tau: \mathrm{A} \rightarrow \mathrm{A}_{1} \times \mathrm{A}_{2}$, such that $\tau\left(e_{i}\right)=\left(0_{i}, 1_{i}\right), 1 \leq i \leq N$.
- We say that \vec{e} and \vec{f} are a pair of complementary central elements of A if there exists an isomorphism $\tau: \mathrm{A} \rightarrow \mathrm{A}_{1} \times \mathrm{A}_{2}$ such that $\tau\left(e_{i}\right)=\left(0_{i}, 1_{i}\right)$ and $\tau\left(f_{i}\right)=\left(1_{i}, 0_{i}\right), 1 \leq i \leq N$.
- A pair of congruences (θ, δ) of an algebra A is a pair of complementary factor congruences of A if $\theta \cap \delta=\Delta^{\mathrm{A}}$ and $\theta \circ \delta=\nabla^{\mathrm{A}}$.
- A pair of congruences (θ, δ) of an algebra A is a pair of complementary factor congruences of A if $\theta \cap \delta=\Delta^{\mathrm{A}}$ and $\theta \circ \delta=\nabla^{\mathrm{A}}$.

Theorem (Vaggione, Sánchez Terraf [28])
 Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$.

- A pair of congruences (θ, δ) of an algebra A is a pair of complementary factor congruences of A if $\theta \cap \delta=\Delta^{\mathrm{A}}$ and $\theta \circ \delta=\nabla^{\mathrm{A}}$.

Theorem (Vaggione, Sánchez Terraf [28])

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$. T.F.E:

- A pair of congruences (θ, δ) of an algebra A is a pair of complementary factor congruences of A if $\theta \cap \delta=\Delta^{\mathrm{A}}$ and $\theta \circ \delta=\nabla^{\mathrm{A}}$.

Theorem (Vaggione, Sánchez Terraf [28])

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$. T.F.E:
(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that for every $1 \leq i \leq N$

- A pair of congruences (θ, δ) of an algebra A is a pair of complementary factor congruences of A if $\theta \cap \delta=\Delta^{\mathrm{A}}$ and $\theta \circ \delta=\nabla^{\mathrm{A}}$.

Theorem (Vaggione, Sánchez Terraf [28])

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$. T.F.E:
(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that for every $1 \leq i \leq N$

$$
\left(e_{i}, 0_{i}\right) \in \theta \text { and }\left(e_{i}, 1_{i}\right) \in \delta \quad \text { and } \quad\left(f_{i}, 0_{i}\right) \in \delta \text { and }\left(f_{i}, 1_{i}\right) \in \theta
$$

- A pair of congruences (θ, δ) of an algebra A is a pair of complementary factor congruences of A if $\theta \cap \delta=\Delta^{\mathrm{A}}$ and $\theta \circ \delta=\nabla^{\mathrm{A}}$.

Theorem (Vaggione, Sánchez Terraf [28])

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$. T.F.E:
(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that for every $1 \leq i \leq N$

$$
\left(e_{i}, 0_{i}\right) \in \theta \text { and }\left(e_{i}, 1_{i}\right) \in \delta \quad \text { and } \quad\left(f_{i}, 0_{i}\right) \in \delta \text { and }\left(f_{i}, 1_{i}\right) \in \theta
$$

(BFC) \mathcal{V} has Boolean factor congruences, i.e., the set of factor congruences of any algebra in \mathcal{V} is a Boolean sublattice of its congruence lattice.

- A pair of congruences (θ, δ) of an algebra A is a pair of complementary factor congruences of A if $\theta \cap \delta=\Delta^{\mathrm{A}}$ and $\theta \circ \delta=\nabla^{\mathrm{A}}$.

Theorem (Vaggione, Sánchez Terraf [28])

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$. T.F.E:
(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that for every $1 \leq i \leq N$

$$
\left(e_{i}, 0_{i}\right) \in \theta \text { and }\left(e_{i}, 1_{i}\right) \in \delta \quad \text { and } \quad\left(f_{i}, 0_{i}\right) \in \delta \text { and }\left(f_{i}, 1_{i}\right) \in \theta
$$

(BFC) \mathcal{V} has Boolean factor congruences, i.e., the set of factor congruences of any algebra in \mathcal{V} is a Boolean sublattice of its congruence lattice.
(DFC) \mathcal{V} has definable factor congruences; i.e, there is a first order formula $\psi(\vec{x}, \vec{y}, \vec{z})$ such that for every $\mathrm{A}, \mathrm{B} \in \mathcal{V}$

- A pair of congruences (θ, δ) of an algebra A is a pair of complementary factor congruences of A if $\theta \cap \delta=\Delta^{\mathrm{A}}$ and $\theta \circ \delta=\nabla^{\mathrm{A}}$.

Theorem (Vaggione, Sánchez Terraf [28])

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$. T.F.E:
(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that for every $1 \leq i \leq N$

$$
\left(e_{i}, 0_{i}\right) \in \theta \text { and }\left(e_{i}, 1_{i}\right) \in \delta \quad \text { and } \quad\left(f_{i}, 0_{i}\right) \in \delta \text { and }\left(f_{i}, 1_{i}\right) \in \theta
$$

(BFC) \mathcal{V} has Boolean factor congruences, i.e., the set of factor congruences of any algebra in \mathcal{V} is a Boolean sublattice of its congruence lattice.
(DFC) \mathcal{V} has definable factor congruences; i.e, there is a first order formula $\psi(\vec{x}, \vec{y}, \vec{z})$ such that for every $\mathrm{A}, \mathrm{B} \in \mathcal{V}$

$$
\mathrm{A} \times \mathrm{B}=\psi([\overrightarrow{0}, \overrightarrow{1}],[\vec{a}, \vec{b}],[\vec{c}, \vec{d}]) \text { iff } \vec{a}=\vec{c}
$$

Generalities about Varieties with BFC

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ and suppose that it has BFC.

Generalities about Varieties with BFC

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ and suppose that it has BFC.

- For every $A \in \mathcal{V}$, we write $Z(A)$ to denote the set of central elements of A.

Generalities about Varieties with BFC

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ and suppose that it has BFC.

- For every $A \in \mathcal{V}$, we write $Z(A)$ to denote the set of central elements of A.
- $\vec{e} \diamond_{\mathrm{A}} \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.

Generalities about Varieties with BFC

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ and suppose that it has BFC.

- For every $A \in \mathcal{V}$, we write $Z(A)$ to denote the set of central elements of A.
- $\vec{e} \diamond_{\mathrm{A}} \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta_{\overrightarrow{0}, \vec{e}}^{A}$ and $\theta_{\overrightarrow{1}, \vec{e}}^{A}$ for the unique pair of complementary factor congruences satisfying

Generalities about Varieties with BFC

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ and suppose that it has BFC.

- For every $A \in \mathcal{V}$, we write $Z(A)$ to denote the set of central elements of A.
- $\vec{e} \diamond_{\mathrm{A}} \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta_{\overrightarrow{0}, \vec{e}}^{A}$ and $\theta_{\overrightarrow{1}, \vec{e}}^{A}$ for the unique pair of complementary factor congruences satisfying $\vec{e} / \theta_{\overrightarrow{0}, \vec{e}}^{\mathrm{A}}=\overrightarrow{0} / \theta_{\overrightarrow{0}, \vec{e}}^{\mathrm{A}}$

Generalities about Varieties with BFC

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ and suppose that it has BFC.

- For every $A \in \mathcal{V}$, we write $Z(A)$ to denote the set of central elements of A.
- $\vec{e} \diamond_{\mathrm{A}} \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta_{\overrightarrow{0}, \vec{e}}^{A}$ and $\theta_{\overrightarrow{1}, \vec{e}}^{A}$ for the unique pair of complementary factor congruences satisfying $\vec{e} / \theta_{\overrightarrow{0}, \vec{e}}^{\mathrm{A}}=\overrightarrow{0} / \theta_{\overrightarrow{0}, \vec{e}}^{\mathrm{A}}$ and

Generalities about Varieties with BFC

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ and suppose that it has BFC.

- For every $A \in \mathcal{V}$, we write $Z(A)$ to denote the set of central elements of A.
- $\vec{e} \diamond_{\mathrm{A}} \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta_{\overrightarrow{0}, \vec{e}}^{A}$ and $\theta_{\overrightarrow{1}, \vec{e}}^{A}$ for the unique pair of complementary factor congruences satisfying $\vec{e} / \theta_{\overrightarrow{0}, \vec{e}}^{\mathrm{A}}=\overrightarrow{0} / \theta_{\overrightarrow{0}, \vec{e}}^{\mathrm{A}}$ and $\vec{e} / \theta_{\overrightarrow{1}, \vec{e}}^{\mathrm{A}}=\overrightarrow{1} / \theta_{\overrightarrow{1}, \vec{e}}^{\mathrm{A}}$.

Generalities about Varieties with BFC

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ and suppose that it has BFC.

- For every $A \in \mathcal{V}$, we write $Z(A)$ to denote the set of central elements of A.
- $\vec{e} \diamond_{\mathrm{A}} \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta_{\overrightarrow{0}, \vec{e}}^{\mathrm{A}}$ and $\theta_{\overrightarrow{\hat{l}}, \vec{e}}^{\mathrm{A}}$ for the unique pair of complementary factor congruences satisfying $\vec{e} / \theta_{\overrightarrow{0}, \vec{e}}^{\mathrm{A}}=\overrightarrow{0} / \theta_{\overrightarrow{0}, \vec{e}}^{\mathrm{A}}$ and $\vec{e} / \theta_{\overrightarrow{1}, \vec{e}}^{\mathrm{A}}=\overrightarrow{1} / \theta_{\overrightarrow{1}, \vec{e}}^{\mathrm{A}}$.

Theorem

Let \mathcal{V} be a variety with BFC. The map $g: Z(A) \rightarrow F C(A)$, defined by $g(\vec{e})=\theta_{\overrightarrow{0}, \vec{e}}^{\mathrm{A}}$ is a bijection and its inverse $h: F C(\mathrm{~A}) \rightarrow Z(\mathrm{~A})$ is defined by $h(\theta)=\vec{e}$, where \vec{e} is the only $\vec{e} \in A^{N}$ such that $\vec{e} / \theta=\overrightarrow{0} / \theta$ and $\vec{e} / \theta^{*}=\overrightarrow{1} / \theta^{*}$.

Generalities about Varieties with BFC

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ and suppose that it has BFC.

- For every $\mathrm{A} \in \mathcal{V}$, we write $Z(\mathrm{~A})$ to denote the set of central elements of A.
- $\vec{e} \diamond_{\mathrm{A}} \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta_{\overrightarrow{0}, \vec{e}}^{A}$ and $\theta_{\overrightarrow{1}, \vec{e}}^{A}$ for the unique pair of complementary factor congruences satisfying $\vec{e} / \theta_{\overrightarrow{0}, \vec{e}}^{\mathrm{A}}=\overrightarrow{0} / \theta_{\overrightarrow{0}, \vec{e}}^{\mathrm{A}}$ and $\vec{e} / \theta_{\overrightarrow{1}, \vec{e}}^{\mathrm{A}}=\overrightarrow{1} / \theta_{\overrightarrow{1}, \vec{e}}^{\mathrm{A}}$.
$Z(A)=\left(Z(A), \vee_{A}, \wedge_{A},{ }^{c_{A}}, \overrightarrow{0}, \overrightarrow{1}\right)$ is a Boolean algebra which is isomorphic to ($F C(\mathrm{~A}), \vee, \cap,{ }^{*}, \Delta^{\mathrm{A}}, \nabla^{\mathrm{A}}$).

Definition

Let \mathcal{V} be a variety with BFC. We say that \mathcal{V} is stable by complements if for every homomorphism $h: \mathrm{A} \rightarrow \mathrm{B}$ and $\vec{e}, \vec{f} \in Z(\mathrm{~A}):$

Definition

Let \mathcal{V} be a variety with BFC. We say that \mathcal{V} is stable by complements if for every homomorphism $h: \mathrm{A} \rightarrow \mathrm{B}$ and $\vec{e}, \vec{f} \in Z(A):$

$$
\vec{e} \diamond_{A} \vec{f} \Rightarrow h(\vec{e}) \diamond_{B} h(\vec{f}) .
$$

Definition

Let \mathcal{V} be a variety with BFC. We say that \mathcal{V} is stable by complements if for every homomorphism $h: \mathrm{A} \rightarrow \mathrm{B}$ and $\vec{e}, \vec{f} \in Z(A):$

$$
\vec{e} \diamond_{A} \vec{f} \Rightarrow h(\vec{e}) \diamond_{B} h(\vec{f})
$$

Warning !

There are varieties with BFC with homomorphisms such that:

Definition

Let \mathcal{V} be a variety with BFC. We say that \mathcal{V} is stable by complements if for every homomorphism $h: A \rightarrow B$ and $\vec{e}, \vec{f} \in Z(A):$

$$
\vec{e} \diamond_{A} \vec{f} \Rightarrow h(\vec{e}) \diamond_{B} h(\vec{f})
$$

Warning !

There are varieties with BFC with homomorphisms such that:
(1) preserve central elements but does not preserve complementary central elements,

Definition

Let \mathcal{V} be a variety with BFC. We say that \mathcal{V} is stable by complements if for every homomorphism $h: A \rightarrow B$ and $\vec{e}, \vec{f} \in Z(A):$

$$
\vec{e} \diamond_{A} \vec{f} \Rightarrow h(\vec{e}) \diamond_{B} h(\vec{f})
$$

Warning !

There are varieties with BFC with homomorphisms such that:
(1) preserve central elements but does not preserve complementary central elements,
(2) does not preserve nor central elements nor complementary central elements.

Definition

Let \mathcal{V} be a variety with BFC. We say that \mathcal{V} is stable by complements if for every homomorphism $h: A \rightarrow B$ and $\vec{e}, \vec{f} \in Z(A):$

$$
\vec{e} \diamond_{A} \vec{f} \Rightarrow h(\vec{e}) \diamond_{B} h(\vec{f})
$$

Warning !

There are varieties with BFC with homomorphisms such that:
(1) preserve central elements but does not preserve complementary central elements,
(2) does not preserve nor central elements nor complementary central elements.

(1) $\mathcal{S}_{0,1}^{\vee}$: Bounded join semilattices.

(1) $\mathcal{S}_{0,1}^{\vee}:$ Bounded join semilattices.

- $\varphi(x, y, z)=(x \vee z \approx y \vee z)$.
(1) $\mathcal{S}_{0,1}^{\vee}$: Bounded join semilattices.
- $\varphi(x, y, z)=(x \vee z \approx y \vee z)$.
- $\mathrm{A}=2 \times 2$.
(1) $\mathcal{S}_{0,1}^{\vee}$: Bounded join semilattices.
- $\varphi(x, y, z)=(x \vee z \approx y \vee z)$.
- $A=2 \times 2$.
- $Z(\mathrm{~A})=A$.
(1) $\mathcal{S}_{0,1}^{\vee}$: Bounded join semilattices.
- $\varphi(x, y, z)=(x \vee z \approx y \vee z)$.
- $A=2 \times 2$.
- $Z(\mathrm{~A})=A$.
- $\alpha: \mathrm{A} \rightarrow \mathrm{A}$,
(1) $\mathcal{S}_{0,1}^{\vee}$: Bounded join semilattices.
- $\varphi(x, y, z)=(x \vee z \approx y \vee z)$.
- $A=2 \times 2$.
- $Z(\mathrm{~A})=A$.
- $\alpha: A \rightarrow A$,

(1) $\mathcal{S}_{0,1}^{\vee}:$ Bounded join semilattices.
- $\varphi(x, y, z)=(x \vee z \approx y \vee z)$.
- $A=2 \times 2$.
- $Z(\mathrm{~A})=A$.
- $\alpha: \mathrm{A} \rightarrow \mathrm{A}$,

$(1,1)$	\mapsto	$(1,1)$
$(0,0)$	\mapsto	$(0,0)$
$(0,1)$	\mapsto	$(1,1)$
$(1,0)$	\mapsto	$(1,1)$

α preserves central elements but does not preserve complementary central elements.

(2) \mathcal{M} : Bounded lattices.

(2) \mathcal{M} : Bounded lattices.

- \mathcal{M} has BFC.
(2) \mathcal{M} : Bounded lattices.
- \mathcal{M} has BFC.
- If $C=2 \times 2$ and D is
(2) \mathcal{M} : Bounded lattices.
- \mathcal{M} has BFC.
- If $C=2 \times 2$ and D is

(2) \mathcal{M} : Bounded lattices.
- \mathcal{M} has BFC.
- If $C=2 \times 2$ and D is

- $\mathrm{C} \leq \mathrm{D}$.
(2) \mathcal{M} : Bounded lattices.
- \mathcal{M} has BFC.
- If $C=2 \times 2$ and D is

- $\mathrm{C} \leq \mathrm{D}$.
- The inclusion does not preserve nor central elements nor complementary central elements.
(2) \mathcal{M} : Bounded lattices.
- \mathcal{M} has BFC.
- If $C=2 \times 2$ and D is

- $\mathrm{C} \leq \mathrm{D}$.
- The inclusion does not preserve nor central elements nor complementary central elements.

Coextensive Varieties

A category with finite products C is called coextensive if for each pair of objects X, Y of C the canonical functor

$$
\times: X / C \times Y / C \rightarrow(X \times Y) / C
$$

is an equivalence.

Coextensive Varieties

A category with finite products C is called coextensive if for each pair of objects X, Y of C the canonical functor

$$
\times: X / C \times Y / C \rightarrow(X \times Y) / C
$$

is an equivalence.

Examples

Coextensive Varieties

A category with finite products C is called coextensive if for each pair of objects X, Y of C the canonical functor

$$
\times: X / C \times Y / C \rightarrow(X \times Y) / C
$$

is an equivalence.

Examples

- Rigs, Real rigs, Integral rigs,

Coextensive Varieties

A category with finite products C is called coextensive if for each pair of objects X, Y of C the canonical functor

$$
\times: X / C \times Y / C \rightarrow(X \times Y) / C
$$

is an equivalence.

Examples

- Rigs, Real rigs, Integral rigs,
- Commutative rings with unit,

Coextensive Varieties

A category with finite products C is called coextensive if for each pair of objects X, Y of C the canonical functor

$$
\times: X / C \times Y / C \rightarrow(X \times Y) / C
$$

is an equivalence.

Examples

- Rigs, Real rigs, Integral rigs,
- Commutative rings with unit,
- Bounded distributive lattices,

Coextensive Varieties

A category with finite products C is called coextensive if for each pair of objects X, Y of C the canonical functor

$$
\times: X / C \times Y / C \rightarrow(X \times Y) / C
$$

is an equivalence.

Examples

- Rigs, Real rigs, Integral rigs,
- Commutative rings with unit,
- Bounded distributive lattices,
- Residuated integral rigs, integral, bounded and commutative residuated lattices, etc.

Coextensive Varieties

A category with finite products C is called coextensive if for each pair of objects X, Y of C the canonical functor

$$
\times: X / C \times Y / C \rightarrow(X \times Y) / C
$$

is an equivalence.

Examples

- Rigs, Real rigs, Integral rigs,
- Commutative rings with unit,
- Bounded distributive lattices,
- Residuated integral rigs, integral, bounded and commutative residuated lattices, etc.

A variety \mathcal{V} is a Pierce Variety if there exist a positive natural number $N, 0$-ary terms $0_{1}, \ldots, 0_{N}, 1_{1}, \ldots, 1_{N}$ and a term $U(x, y, \vec{z}, \vec{w})$, such that the following identities hold in \mathcal{V} :

A variety \mathcal{V} is a Pierce Variety if there exist a positive natural number $N, 0$-ary terms $0_{1}, \ldots, 0_{N}, 1_{1}, \ldots, 1_{N}$ and a term $U(x, y, \vec{z}, \vec{w})$, such that the following identities hold in \mathcal{V} :

$$
\begin{aligned}
& U(x, y, \overrightarrow{0}, \overrightarrow{1})=x \\
& U(x, y, \overrightarrow{1}, \overrightarrow{0})=y
\end{aligned}
$$

A variety \mathcal{V} is a Pierce Variety if there exist a positive natural number $N, 0$-ary terms $0_{1}, \ldots, 0_{N}, 1_{1}, \ldots, 1_{N}$ and a term $U(x, y, \vec{z}, \vec{w})$, such that the following identities hold in \mathcal{V} :

$$
\begin{aligned}
& U(x, y, \overrightarrow{0}, \overrightarrow{1})=x \\
& U(x, y, \overrightarrow{1}, \overrightarrow{0})=y .
\end{aligned}
$$

Examples

- Rigs and Rings with unit: $U(x, y, z, w)=(x \cdot w)+(y \cdot z), 0,1$.

A variety \mathcal{V} is a Pierce Variety if there exist a positive natural number $N, 0$-ary terms $0_{1}, \ldots, 0_{N}, 1_{1}, \ldots, 1_{N}$ and a term $U(x, y, \vec{z}, \vec{w})$, such that the following identities hold in \mathcal{V} :

$$
\begin{aligned}
& U(x, y, \overrightarrow{0}, \overrightarrow{1})=x \\
& U(x, y, \overrightarrow{1}, \overrightarrow{0})=y .
\end{aligned}
$$

Examples

- Rigs and Rings with unit: $U(x, y, z, w)=(x \cdot w)+(y \cdot z), 0,1$.
- Bounded lattices: $U(x, y, z, w)=(x \wedge w) \vee(y \wedge z), 0,1$.

A variety \mathcal{V} is a Pierce Variety if there exist a positive natural number $N, 0$-ary terms $0_{1}, \ldots, 0_{N}, 1_{1}, \ldots, 1_{N}$ and a term $U(x, y, \vec{z}, \vec{w})$, such that the following identities hold in \mathcal{V} :

$$
\begin{aligned}
& U(x, y, \overrightarrow{0}, \overrightarrow{1})=x \\
& U(x, y, \overrightarrow{1}, \overrightarrow{0})=y .
\end{aligned}
$$

Examples

- Rigs and Rings with unit: $U(x, y, z, w)=(x \cdot w)+(y \cdot z), 0,1$.
- Bounded lattices: $U(x, y, z, w)=(x \wedge w) \vee(y \wedge z), 0,1$.
- Church varieties: Varieties with a term $u(x, y, z)$ and 0 -ary terms 0 and 1 satisfying $u(x, y, 0)=x$ and $u(x, y, 1)=y$.

A variety \mathcal{V} is a Pierce Variety if there exist a positive natural number $N, 0$-ary terms $0_{1}, \ldots, 0_{N}, 1_{1}, \ldots, 1_{N}$ and a term $U(x, y, \vec{z}, \vec{w})$, such that the following identities hold in \mathcal{V} :

$$
\begin{aligned}
& U(x, y, \overrightarrow{0}, \overrightarrow{1})=x \\
& U(x, y, \overrightarrow{1}, \overrightarrow{0})=y .
\end{aligned}
$$

Examples

- Rigs and Rings with unit: $U(x, y, z, w)=(x \cdot w)+(y \cdot z), 0,1$.
- Bounded lattices: $U(x, y, z, w)=(x \wedge w) \vee(y \wedge z), 0,1$.
- Church varieties: Varieties with a term $u(x, y, z)$ and 0 -ary terms 0 and 1 satisfying $u(x, y, 0)=x$ and $u(x, y, 1)=y$.
- Boolean algebras: $u(x, y, z)=(x \vee z) \wedge\left(y \vee z^{\prime}\right), 0,1$.

A variety \mathcal{V} is a Pierce Variety if there exist a positive natural number $N, 0$-ary terms $0_{1}, \ldots, 0_{N}, 1_{1}, \ldots, 1_{N}$ and a term $U(x, y, \vec{z}, \vec{w})$, such that the following identities hold in \mathcal{V} :

$$
\begin{aligned}
& U(x, y, \overrightarrow{0}, \overrightarrow{1})=x \\
& U(x, y, \overrightarrow{1}, \overrightarrow{0})=y
\end{aligned}
$$

Examples

- Rigs and Rings with unit: $U(x, y, z, w)=(x \cdot w)+(y \cdot z), 0,1$.
- Bounded lattices: $U(x, y, z, w)=(x \wedge w) \vee(y \wedge z), 0,1$.
- Church varieties: Varieties with a term $u(x, y, z)$ and 0 -ary terms 0 and 1 satisfying $u(x, y, 0)=x$ and $u(x, y, 1)=y$.
- Boolean algebras: $u(x, y, z)=(x \vee z) \wedge\left(y \vee z^{\prime}\right), 0,1$.
- Integral, bounded and commutative residuated lattices:

$$
u(x, y, z)=(x \vee z) \wedge(y \vee(z \rightarrow 0)), 0,1 .
$$

A variety \mathcal{V} is a Pierce Variety if there exist a positive natural number $N, 0$-ary terms $0_{1}, \ldots, 0_{N}, 1_{1}, \ldots, 1_{N}$ and a term $U(x, y, \vec{z}, \vec{w})$, such that the following identities hold in \mathcal{V} :

$$
\begin{aligned}
& U(x, y, \overrightarrow{0}, \overrightarrow{1})=x \\
& U(x, y, \overrightarrow{1}, \overrightarrow{0})=y
\end{aligned}
$$

Examples

- Rigs and Rings with unit: $U(x, y, z, w)=(x \cdot w)+(y \cdot z), 0,1$.
- Bounded lattices: $U(x, y, z, w)=(x \wedge w) \vee(y \wedge z), 0,1$.
- Church varieties: Varieties with a term $u(x, y, z)$ and 0 -ary terms 0 and 1 satisfying $u(x, y, 0)=x$ and $u(x, y, 1)=y$.
- Boolean algebras: $u(x, y, z)=(x \vee z) \wedge\left(y \vee z^{\prime}\right), 0,1$.
- Integral, bounded and commutative residuated lattices:

$$
u(x, y, z)=(x \vee z) \wedge(y \vee(z \rightarrow 0)), 0,1 .
$$

Theorem ([36])
 Let \mathcal{V} a variety. T.F.E:

Theorem ([36])

Let \mathcal{V} a variety. T.F.E:
(1) \mathcal{V} is coextensive.

Theorem ([36])

Let \mathcal{V} a variety. T.F.E:
(1) \mathcal{V} is coextensive.
(2) \mathcal{V} is a Pierce variety in which the relation $\vec{e} \diamond_{\mathrm{A}} \vec{f}$ is equationally definable.

Theorem ([36])

Let \mathcal{V} a variety. T.F.E:
(1) \mathcal{V} is coextensive.
(2) \mathcal{V} is a Pierce variety in which the relation $\vec{e} \diamond_{\mathrm{A}} \vec{f}$ is equationally definable.
(3) \mathcal{V} is a Pierce variety stable by complements.

Theorem ([36])

Let \mathcal{V} a variety. T.F.E:
(1) \mathcal{V} is coextensive.
(2) \mathcal{V} is a Pierce variety in which the relation $\vec{e} \diamond_{\mathrm{A}} \vec{f}$ is equationally definable.
(3) \mathcal{V} is a Pierce variety stable by complements.

$$
\sigma(\vec{x}, \vec{y})=
$$

Theorem ([36])

Let \mathcal{V} a variety. T.F.E:
(1) \mathcal{V} is coextensive.
(2) \mathcal{V} is a Pierce variety in which the relation $\vec{e} \diamond_{\mathrm{A}} \vec{f}$ is equationally definable.
(3) \mathcal{V} is a Pierce variety stable by complements.

$$
\sigma(\vec{x}, \vec{y})=\bigwedge_{i=1}^{n} p_{i}(\vec{x}, \vec{y})=q_{i}(\vec{x}, \vec{y}) \text { defines } \vec{e} \diamond \vec{f} \text { in } \mathcal{V}
$$

Theorem ([36])

Let \mathcal{V} a variety. T.F.E:
(1) \mathcal{V} is coextensive.
(2) \mathcal{V} is a Pierce variety in which the relation $\vec{e} \diamond_{\mathrm{A}} \vec{f}$ is equationally definable.
(3) \mathcal{V} is a Pierce variety stable by complements.

An algebra A in \mathcal{V} is indecomposable if and only if the following sequents hold:

Theorem ([36])

Let \mathcal{V} a variety. T.F.E:
(1) \mathcal{V} is coextensive.
(2) \mathcal{V} is a Pierce variety in which the relation $\vec{e} \diamond_{\mathrm{A}} \vec{f}$ is equationally definable.
(3) \mathcal{V} is a Pierce variety stable by complements.

An algebra A in \mathcal{V} is indecomposable if and only if the following sequents hold:

$$
0=1 \vdash \perp
$$

Theorem ([36])

Let \mathcal{V} a variety. T.F.E:
(1) \mathcal{V} is coextensive.
(2) \mathcal{V} is a Pierce variety in which the relation $\vec{e} \diamond_{\mathrm{A}} \vec{f}$ is equationally definable.
(3) \mathcal{V} is a Pierce variety stable by complements.

An algebra A in \mathcal{V} is indecomposable if and only if the following sequents hold:

$$
\begin{gathered}
0=1 \vdash \perp \\
\sigma(\vec{x}, \vec{y}) \vdash_{\vec{x}, \vec{y}}(\vec{x}=\overrightarrow{0} \wedge \vec{y}=\overrightarrow{1}) \vee(\vec{x}=\overrightarrow{1} \wedge \vec{y}=\overrightarrow{0}) .
\end{gathered}
$$

Theorem ([36])

Let \mathcal{V} a variety. T.F.E:
(1) \mathcal{V} is coextensive.
(2) \mathcal{V} is a Pierce variety in which the relation $\vec{e} \diamond_{\mathrm{A}} \vec{f}$ is equationally definable.
(3) \mathcal{V} is a Pierce variety stable by complements.

Definition

Let E be a topos. A \mathcal{V}-model X of E is \mathcal{V}-indecomposable if the sequents

$$
\begin{gathered}
0=1 \vdash \perp \\
\sigma(\vec{x}, \vec{y}) \vdash_{\vec{x}, \vec{y}}(\vec{x}=\overrightarrow{0} \wedge \vec{y}=\overrightarrow{1}) \vee(\vec{x}=\overrightarrow{1} \wedge \vec{y}=\overrightarrow{0})
\end{gathered}
$$

hold in the internal logic of E.

Theorem ([36])

Let \mathcal{V} a variety. T.F.E:
(1) \mathcal{V} is coextensive.
(2) \mathcal{V} is a Pierce variety in which the relation $\vec{e} \diamond_{\mathrm{A}} \vec{f}$ is equationally definable.
(3) \mathcal{V} is a Pierce variety stable by complements.

Proposition

Let E be a topos. A \mathcal{V}-model X of E is \mathcal{V}-indecomposable iff the diagram below

$$
0 \xrightarrow{!} 1 \xrightarrow[\overrightarrow{0}]{\stackrel{\rightharpoonup}{1}} X^{n}
$$

is an equalizer in E , and the morphism $\alpha: 1+1 \rightarrow[\sigma(\vec{x}, \vec{y})]_{X}$ is an isomorphism.

The Gaeta topos and $f p$-coextensive varieties

Definition

A coextensive variety \mathcal{V} is said to be $f p$-coextensive if $\operatorname{Mod}_{f p}(\mathcal{V})$ is coextensive.

The Gaeta topos and fp-coextensive varieties

Definition

A coextensive variety \mathcal{V} is said to be $f p$-coextensive if $\operatorname{Mod}_{f p}(\mathcal{V})$ is coextensive.

Theorem

Let \mathcal{V} be a coextensive variety. Then \mathcal{V} is fp-coextensive if and only if binary products of finitely generated free algebras of \mathcal{V} are finitely presented.

The Gaeta topos and fp-coextensive varieties

Definition

A coextensive variety \mathcal{V} is said to be $f p$-coextensive if $\operatorname{Mod}_{f p}(\mathcal{V})$ is coextensive.

Theorem

Let \mathcal{V} be a coextensive variety. Then \mathcal{V} is fp-coextensive if and only if binary products of finitely generated free algebras of \mathcal{V} are finitely presented.

Proposition

Let \mathcal{V} be a coextensive variety of finite type. If \mathcal{V} is locally finite then it is f p-coextensive.

The Gaeta topos and fp-coextensive varieties

Let C be a small extensive category and let X be an object of C.

The Gaeta topos and fp-coextensive varieties

Let C be a small extensive category and let X be an object of C.
$\left\{f_{i}: X_{i} \rightarrow X \mid i \in I\right\} \in K_{\mathcal{G}}(X)$ iff $I<\omega$ and $\left[f_{i}\right]: \Sigma X_{i} \rightarrow X$ is an iso.

The Gaeta topos and fp-coextensive varieties

Let C be a small extensive category and let X be an object of C.
$\left\{f_{i}: X_{i} \rightarrow X \mid i \in I\right\} \in K_{\mathcal{G}}(X)$ iff $I<\omega$ and $\left[f_{i}\right]: \Sigma X_{i} \rightarrow X$ is an iso.
$\operatorname{Shv}\left(\mathrm{C}, J_{\mathcal{G}}\right)$

The Gaeta topos and fp-coextensive varieties

Let C be a small extensive category and let X be an object of C.
$\left\{f_{i}: X_{i} \rightarrow X \mid i \in I\right\} \in K_{\mathcal{G}}(X)$ iff $I<\omega$ and $\left[f_{i}\right]: \Sigma X_{i} \rightarrow X$ is an iso.
$\operatorname{Shv}\left(C, J_{\mathcal{G}}\right) \Longrightarrow \underline{\text { Gaeta topos }}$

The Gaeta topos and fp-coextensive varieties

Let C be a small extensive category and let X be an object of C.
$\left\{f_{i}: X_{i} \rightarrow X \mid i \in I\right\} \in K_{\mathcal{G}}(X)$ iff $I<\omega$ and $\left[f_{i}\right]: \Sigma X_{i} \rightarrow X$ is an iso.
$\operatorname{Shv}\left(C, J_{\mathcal{G}}\right) \Longrightarrow \underline{\text { Gaeta topos }}$

If \mathcal{V} is an fp -coextensive variety

The Gaeta topos and fp-coextensive varieties

Let C be a small extensive category and let X be an object of C.
$\left\{f_{i}: X_{i} \rightarrow X \mid i \in I\right\} \in K_{\mathcal{G}}(X)$ iff $I<\omega$ and $\left[f_{i}\right]: \Sigma X_{i} \rightarrow X$ is an iso.
$\operatorname{Shv}\left(C, J_{\mathcal{G}}\right) \Longrightarrow \underline{\text { Gaeta topos }}$

If \mathcal{V} is an fp -coextensive variety

$$
\mathcal{G}(\mathcal{V})=\operatorname{Shv}\left(\operatorname{Mod}_{\mathrm{fp}}(\mathcal{V})^{\mathrm{op}}, J_{\mathcal{G}}\right)
$$

Main Theorem

Theorem

Let \mathcal{V} be an fp-coextensive variety. Then, the following are equivalent:

Main Theorem

Theorem

Let \mathcal{V} be an fp-coextensive variety. Then, the following are equivalent:
(1) $\mathcal{G}(\mathcal{V})$ is a classifying topos for \mathcal{V}-indecomposable objects.

Main Theorem

Theorem

Let \mathcal{V} be an fp-coextensive variety. Then, the following are equivalent:
(1) $\mathcal{G}(\mathcal{V})$ is a classifying topos for \mathcal{V}-indecomposable objects.
(2) $\mathrm{F}_{\mathcal{V}}(x)$ is indecomposable.

Applications: Bounded distributive lattices

Applications: Bounded distributive lattices

- $U(x, y, z, w)=(x \vee z) \wedge(y \vee w)$.

Applications: Bounded distributive lattices

- $U(x, y, z, w)=(x \vee z) \wedge(y \vee w)$.
- $\sigma(x, y)=(x \wedge y=0) \wedge(x \vee y=1)$.

Applications: Bounded distributive lattices

- $U(x, y, z, w)=(x \vee z) \wedge(y \vee w)$.
- $\sigma(x, y)=(x \wedge y=0) \wedge(x \vee y=1)$.
- $\mathcal{D} \mathcal{L}_{01}$ is fp -coextensive.

Applications: Bounded distributive lattices

- $U(x, y, z, w)=(x \vee z) \wedge(y \vee w)$.
- $\sigma(x, y)=(x \wedge y=0) \wedge(x \vee y=1)$.
- $\mathcal{D} \mathcal{L}_{01}$ is fp -coextensive. (it is locally finite)

Applications: Bounded distributive lattices

- $U(x, y, z, w)=(x \vee z) \wedge(y \vee w)$.
- $\sigma(x, y)=(x \wedge y=0) \wedge(x \vee y=1)$.
- $\mathcal{D} \mathcal{L}_{01}$ is fp -coextensive. (it is locally finite)

Applications: Bounded distributive lattices

- $U(x, y, z, w)=(x \vee z) \wedge(y \vee w)$.
- $\sigma(x, y)=(x \wedge y=0) \wedge(x \vee y=1)$.
- $\mathcal{D} \mathcal{L}_{01}$ is fp -coextensive. (it is locally finite)

$\therefore \mathcal{G}\left(\mathcal{D} \mathcal{L}_{01}\right)$ classifies $\mathcal{D} \mathcal{L}_{01}$-indecomposable objects.

Applications: Integral rigs

Integral rigs

A integral rig is an algebra $\mathrm{A}=(A,+, \cdot, 0,1)$ of type $(2,2,0,0)$ such that the structures $(A, \cdot, 1)$ and $(A,+, 0)$ are commutative monoids such that:

Applications: Integral rigs

Integral rigs

A integral rig is an algebra $\mathrm{A}=(A,+, \cdot, 0,1)$ of type $(2,2,0,0)$ such that the structures $(A, \cdot, 1)$ and $(A,+, 0)$ are commutative monoids such that:
(1) $x \cdot 0=0$.

Applications: Integral rigs

Integral rigs

A integral rig is an algebra $\mathrm{A}=(A,+, \cdot, 0,1)$ of type $(2,2,0,0)$ such that the structures $(A, \cdot, 1)$ and $(A,+, 0)$ are commutative monoids such that:
(1) $x \cdot 0=0$.
(2) $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$.

Applications: Integral rigs

Integral rigs

A integral rig is an algebra $\mathrm{A}=(\mathrm{A},+, \cdot, 0,1)$ of type $(2,2,0,0)$ such that the structures $(A, \cdot, 1)$ and $(A,+, 0)$ are commutative monoids such that:
(1) $x \cdot 0=0$.
(2) $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$.
(3) $1+x=x$.

Applications: Integral rigs

Integral rigs

A integral rig is an algebra $\mathrm{A}=(\mathrm{A},+, \cdot, 0,1)$ of type $(2,2,0,0)$ such that the structures $(A, \cdot, 1)$ and $(A,+, 0)$ are commutative monoids such that:
(1) $x \cdot 0=0$.
(2) $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$.
(3) $1+x=x$.

Applications: Integral rigs

- $U(x, y, z, w)=(x+z) \cdot(y+w)$.

Applications: Integral rigs

- $U(x, y, z, w)=(x+z) \cdot(y+w)$.
- $\sigma(x, y)=(x \cdot y=0) \wedge(x+y=1)$.

Applications: Integral rigs

- $U(x, y, z, w)=(x+z) \cdot(y+w)$.
- $\sigma(x, y)=(x \cdot y=0) \wedge(x+y=1)$.
- $\mathcal{R N}$ is fp -coextensive ([25]).

Applications: Integral rigs

- $U(x, y, z, w)=(x+z) \cdot(y+w)$.
- $\sigma(x, y)=(x \cdot y=0) \wedge(x+y=1)$.
- $\mathcal{R N}$ is fp -coextensive ([25]).
- $\mathrm{F}_{\mathcal{R N}}(x): 0<\ldots<x^{n}<\ldots<x^{2}<x<x^{0}=1$.

Applications: Integral rigs

- $U(x, y, z, w)=(x+z) \cdot(y+w)$.
- $\sigma(x, y)=(x \cdot y=0) \wedge(x+y=1)$.
- $\mathcal{R N}$ is fp -coextensive ([25]).
- $\mathrm{F}_{\mathcal{R N}}(x): 0<\ldots<x^{n}<\ldots<x^{2}<x<x^{0}=1$.
$\therefore \mathcal{G}(\mathcal{R N})$ classifies $\mathcal{R N}$-indecomposable objects.

Applications: Commutative rings with unit

Applications: Commutative rings with unit

- $U(x, y, z, w)=(x+z) \cdot(y+w)$.

Applications: Commutative rings with unit

- $U(x, y, z, w)=(x+z) \cdot(y+w)$.
- $\sigma(x, y)=(x \cdot y=0) \wedge(x+y=1)$.

Applications: Commutative rings with unit

- $U(x, y, z, w)=(x+z) \cdot(y+w)$.
- $\sigma(x, y)=(x \cdot y=0) \wedge(x+y=1)$.
- \mathcal{R} is fp -coextensive.

Applications: Commutative rings with unit

- $U(x, y, z, w)=(x+z) \cdot(y+w)$.
- $\sigma(x, y)=(x \cdot y=0) \wedge(x+y=1)$.
- \mathcal{R} is fp -coextensive. (floklore)

Applications: Commutative rings with unit

- $U(x, y, z, w)=(x+z) \cdot(y+w)$.
- $\sigma(x, y)=(x \cdot y=0) \wedge(x+y=1)$.
- \mathcal{R} is fp -coextensive. (floklore)
- $\mathrm{F}_{\mathcal{R}}(x)=\mathrm{Z}[x]$ is indecomposable.

Applications: Commutative rings with unit

- $U(x, y, z, w)=(x+z) \cdot(y+w)$.
- $\sigma(x, y)=(x \cdot y=0) \wedge(x+y=1)$.
- \mathcal{R} is fp -coextensive. (floklore)
- $\mathrm{F}_{\mathcal{R}}(x)=\mathrm{Z}[x]$ is indecomposable.
$\therefore \mathcal{G}(\mathcal{R})$ classifies \mathcal{R}-indecomposable objects.

Applications: Heyting algebras

Applications: Heyting algebras

- $U(x, y, z, w)=(z \wedge y) \vee(\neg z \wedge x)$.

Applications: Heyting algebras

- $U(x, y, z, w)=(z \wedge y) \vee(\neg z \wedge x)$.
- $\sigma(x, y)=(x \wedge y=0) \wedge(x \vee y=1)$.

Applications: Heyting algebras

- $U(x, y, z, w)=(z \wedge y) \vee(\neg z \wedge x)$.
- $\sigma(x, y)=(x \wedge y=0) \wedge(x \vee y=1)$.
- \mathcal{H} is fp -coextensive. ([17])

Applications: Heyting algebras

- $U(x, y, z, w)=(z \wedge y) \vee(\neg z \wedge x)$.
- $\sigma(x, y)=(x \wedge y=0) \wedge(x \vee y=1)$.
- \mathcal{H} is fp -coextensive. ([17])
- $\mathrm{F}_{\mathcal{H}}(x)$ is indecomposable. ([9])

Applications: Heyting algebras

- $U(x, y, z, w)=(z \wedge y) \vee(\neg z \wedge x)$.
- $\sigma(x, y)=(x \wedge y=0) \wedge(x \vee y=1)$.
- \mathcal{H} is fp -coextensive. ([17])
- $\mathrm{F}_{\mathcal{H}}(x)$ is indecomposable. ([9])
$\therefore \mathcal{G}(\mathcal{H})$ classifies \mathcal{H}-indecomposable objects.

Applications: MV-algebras

Applications: MV-algebras

MV-algebras

An MV-algebra is an algebra $(A, \oplus, \neg, 0)$ of type $(2,1,0)$ such that $(A, \oplus, 0)$ is a commutative monoid such that the following equations hold:

Applications: MV-algebras

MV-algebras

An MV-algebra is an algebra $(A, \oplus, \neg, 0)$ of type $(2,1,0)$ such that $(A, \oplus, 0)$ is a commutative monoid such that the following equations hold:
(1) $\neg \neg x=x$.

Applications: MV-algebras

MV-algebras

An MV-algebra is an algebra $(A, \oplus, \neg, 0)$ of type $(2,1,0)$ such that $(A, \oplus, 0)$ is a commutative monoid such that the following equations hold:
(1) $\neg \neg x=x$.
(2) $x \oplus \neg 0=\neg 0$.

Applications: MV-algebras

MV-algebras

An MV-algebra is an algebra $(A, \oplus, \neg, 0)$ of type $(2,1,0)$ such that $(A, \oplus, 0)$ is a commutative monoid such that the following equations hold:
(1) $\neg \neg x=x$.
(2) $x \oplus \neg 0=\neg 0$.
(3) $\neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x$.

Applications: MV-algebras

MV-algebras

An MV-algebra is an algebra $(A, \oplus, \neg, 0)$ of type $(2,1,0)$ such that $(A, \oplus, 0)$ is a commutative monoid such that the following equations hold:
(1) $\neg \neg x=x$.
(2) $x \oplus \neg 0=\neg 0$.
(3) $\neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x$.

$$
x+y=\neg(\neg x \oplus y) \oplus y \quad 1=\neg 0 \quad x \cdot y=\neg(\neg x \oplus \neg y)
$$

Applications: MV-algebras

Applications: MV-algebras

- $U(x, y, z, w)=(x+z) \cdot(y+w)$.

Applications: MV-algebras

- $U(x, y, z, w)=(x+z) \cdot(y+w)$.
- $\sigma(x, y)=(x+y=0) \wedge(x \cdot y=1)$.

Applications: MV-algebras

- $U(x, y, z, w)=(x+z) \cdot(y+w)$.
- $\sigma(x, y)=(x+y=0) \wedge(x \cdot y=1)$.
- $\mathcal{M V}$ is fp -coextensive. ([24])

Applications: MV-algebras

- $U(x, y, z, w)=(x+z) \cdot(y+w)$.
- $\sigma(x, y)=(x+y=0) \wedge(x \cdot y=1)$.
- $\mathcal{M V}$ is fp -coextensive. ([24])
- $\mathrm{F}_{\mathcal{M V}}(x)$ is indecomposable. ([13])

Applications: MV-algebras

- $U(x, y, z, w)=(x+z) \cdot(y+w)$.
- $\sigma(x, y)=(x+y=0) \wedge(x \cdot y=1)$.
- $\mathcal{M V}$ is fp -coextensive. ([24])
- $\mathrm{F}_{\mathcal{M V}}(x)$ is indecomposable. ([13])
$\therefore \mathcal{G}(\mathcal{M V})$ classifies $\mathcal{M V}$-indecomposable objects.

Applications: Gödel algebras

Gödel algebras

An algebra $\mathrm{A}=(\mathrm{A}, \wedge, \vee, \rightarrow, 0,1)$ of type $(2,2,2,0,0)$ is a Gödel algebra provided that:

Applications: Gödel algebras

Gödel algebras

An algebra $\mathrm{A}=(A, \wedge, \vee, \rightarrow, 0,1)$ of type $(2,2,2,0,0)$ is a Gödel algebra provided that:
(1) $(A, \wedge, \vee, \rightarrow, 0,1) \in \mathcal{H}$.

Applications: Gödel algebras

Gödel algebras

An algebra $\mathrm{A}=(A, \wedge, \vee, \rightarrow, 0,1)$ of type $(2,2,2,0,0)$ is a Gödel algebra provided that:
(1) $(A, \wedge, \vee, \rightarrow, 0,1) \in \mathcal{H}$.
(2) $(x \rightarrow y) \vee(y \rightarrow x)=1$.

Applications: Gödel algebras

Gödel algebras

An algebra $\mathrm{A}=(A, \wedge, \vee, \rightarrow, 0,1)$ of type $(2,2,2,0,0)$ is a Gödel algebra provided that:
(1) $(A, \wedge, \vee, \rightarrow, 0,1) \in \mathcal{H}$.
(2) $(x \rightarrow y) \vee(y \rightarrow x)=1$.

Applications: Gödel algebras

- $\mathcal{P H}$ is coextensive.

Applications: Gödel algebras

- $\mathcal{P H}$ is coextensive. (proof: similar to the proof for \mathcal{H})

Applications: Gödel algebras

- $\mathcal{P H}$ is coextensive. (proof: similar to the proof for \mathcal{H})
- $\mathcal{P H}$ is fp -coextensive.

Applications: Gödel algebras

- $\mathcal{P H}$ is coextensive. (proof: similar to the proof for \mathcal{H})
- $\mathcal{P H}$ is $f p-c o e x t e n s i v e . ~(i t ~ i s ~ l o c a l l y ~ f i n i t e) ~(~) ~$

Applications: Gödel algebras

- $\mathcal{P H}$ is coextensive. (proof: similar to the proof for \mathcal{H})
- $\mathcal{P H}$ is fp-coextensive. (it is locally finite)
- $\mathrm{F}_{\mathcal{P H}}(x)$ is decomposable.

Applications: Gödel algebras

- $\mathcal{P H}$ is coextensive. (proof: similar to the proof for \mathcal{H})
- $\mathcal{P H}$ is $f p$-coextensive. (it is locally finite)
- $\mathrm{F}_{\mathcal{P H}}(x)$ is decomposable. $(\neg x \vee \neg \neg x=1$ and $\neg x \wedge \neg \neg x=0)$

Applications: Gödel algebras

- $\mathcal{P H}$ is coextensive. (proof: similar to the proof for \mathcal{H})
- $\mathcal{P H}$ is $f p$-coextensive. (it is locally finite)
- $\mathrm{F}_{\mathcal{P H}}(x)$ is decomposable. $(\neg x \vee \neg \neg x=1$ and $\neg x \wedge \neg \neg x=0)$

$\therefore \mathcal{G}(\mathcal{P H})$ does not classifies $\mathcal{M V}$-indecomposable objects.

Thanks!

References I

B Badano, M., Vaggione, D.: Equational definability of (complementary) central elements. International Journal of Algebra and Computation 26, 509-532 (2016)
© Broodryk, D.N.: Characterization of left coextensive varieties of universal algebras. Theory and Applications of Categories 34, No. 32, 1036-1038 (2019)
Q Broodryk, D.N.: Characterization of coextensive varieties of universal algebras (2020, preprint) arXiv:2008.03474 [math.CT]
© Broodryk, D.N.: Characterization of coextensive varieties of universal algebras II (2021, preprint) arXiv:2104.12188 [math.CT]

References II

Burris, S., Sankappanavar, H.P.: A course in universal algebra. Graduate Texts Math, 78 (1981)
© Campercholi, M., Vaggione, D.: Implicit definition of the quaternary discriminator. Algebra Universalis 68 No. 1, 1-16 (2012)

Q Carboni A., Lack, S., Walters, R.F.C.: Introduction to extensive and distributive categories. Journal of Pure and Applied Algebra Vol. 84, Issue 2, 145-158 (1993)
© Carboni, A., Pedicchio, M.C., Rosický, J.: Syntactic characterizations of various classes of locally presentable categories. Journal of Pure and Applied Algebra Vol. 161, Issues 1-2, 65-90 (2001)

References III

© Castaño D., J. P. Díaz Varela, Torrens A., Indecomposability of free algebras in some subvarieties of residuated lattices and their bounded subreducts, Soft Computing 15 (7) (2011) 1449-1455.
© Castiglioni, J. L., Menni, M., Zuluaga Botero, W.J.: A representation theorem for integral rigs and its applications to residuated lattices. Journal of Pure and Applied Algebra 220, 3533-3566 (2016)
© Chang, C.C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88, 467-490 (1958)
© Chang, C.C., Jónsson, B., Tarski, A.: Refinement properties for relational structures. Fund. Math. 54, 249-281 (1964)

References IV

Q Cignoli R., Torrens A., Hájek basic fuzzy logic and Łukasiewicz infinite-valued logic, Archive for Mathematical Logic 42 (4) (2003) 361-370.
θ Comer, S.: Representations by algebras of sections over Boolean spaces. Pacific Journal of Mathematics 38, No. 1, 29-38 (1971)
Fraser, G.A., Horn A.: Congruence relations in direct products.
Proc. Amer. Math. 26, 390-394 (1970)
© Galatos, N., Jipsen P., Kowalski, T., Ono, H.: Residuated Lattices: An algebraic glimpse at logics without contraction, Elsevier (2007)

References V

S. Ghilardi, M. Zawadowski, A sheaf representation and duality for finitely presented heyting algebras, The Journal of Symbolic Logic 60 (3) (1995) 595 911-939.

Hájek, P.: Metamathematics of Fuzzy Logic, Vol. 4. Springer Science \& Business Media (2013)

Q Hoefnagel, M.: M-coextensive objects and the strict refinement property. Journal of Pure and Applied Algebra Vol. 224, 106381 (2020)

Knoebel, A.: Sheaves of algebras over Boolean spaces. Birkhäuser (2012)

References VI

Q Lawvere, F.W.: Some thoughts on the future of category theory. In: Carboni A., Pedicchio M.C., Rosolini G. (eds) Category Theory. Lecture Notes in Mathematics, vol 1488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0084208
\& Manzonetto, G., Salibra, A: Applying universal algebra to lambda calculus. Journal of Logic and Computation 20, 877-915 (2010)

Q Manzonetto, G., Salibra, A: From λ-calculus to universal algebra and back. In: Ochmański E., Tyszkiewicz J. (eds) Mathematical Foundations of Computer Science 2008. MFCS 2008. Lecture Notes in Computer Science, vol 5162. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-85238-4_39

References VII

© Marra V., Spada L., Duality, projectivity, and unification in lukasiewicz logic and mv-algebras, Annals of Pure and Applied logic 164 (3) (2013) 192-210.

Q M. Menni, A basis theorem for 2-rigs and rig geometry, Cah. Topologie Géom. Différ. Catégoriques 62 (4) (2021) 451-490.
\& Rosenberg, I.: About functional completeness in multi-valued logics. Rozpr. CSAV Rada Mat. Pfir. Ved 80, 3-93 (1970) (German)

Q Salibra, A., Ledda, A., Paoli, F., et al.: Boolean-like algebras. Algebra Universalis 69, 113-138 (2013)
© Sanchez Terraf P., Vaggione, D.: Varieties with definable factor congruences. Trans. Amer. Math. Soc. 361, 5061-5088 (2009)

References VIII

Q Schanuel, S.H.: Negative sets have Euler characteristic and dimension. In: Carboni A., Pedicchio M.C., Rosolini G. (eds) Category Theory. Lecture Notes in Mathematics, vol 1488. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/BFb0084232
© Vaggione, D.: Varieties in which the Pierce Stalks are Directly Indecomposable. Journal of Algebra 184, 424-434 (1996)
\& Vaggione, D.: Varieties of shells. Algebra Universalis 36, 483-487 (1996)
V Vaggione, D.: \mathcal{V} with factorable congruences and $\mathcal{V}=\Gamma^{a}\left(\mathcal{V}_{D I}\right)$ imply \mathcal{V} is a discriminator variety. Acta Sci. Math. 62, 359-368 (1996)

References IX

Q Vaggione, D.: Central Elements in Varieties with the Fraser-Horn Property. Advances in Mathematics Vol. 148 Issue 2, 193-202 (1999)
Q Vaggione, D.: Characterization of discriminator varieties. Proceedings of the American Mathematical Society Vol. 129 No. 3, 663-666 (2001)

Q Vaggione, D., Zuluaga Botero, W.J.: Pierce stalks in preprimal varieties. Journal of Multiple-Valued Logic \& Soft Computing Vol. 36 Issue 4/5, 437-453 (2021)
© Zuluaga Botero, W.J. Coextensive varieties via central
elements. Algebra Univers. 82, 50 https://doi.org/10.1007/s00012-021-00745-2 (2021)

References X

Zuluaga Botero, W.J.: Representation by sheaves of riRigs. PhD Thesis, Universidad Nacional de La Plata (2016) (Spanish) https://doi.org/10.35537/10915/54115

