Modal logic over semi-primal algebras

Wolfgang Poiger

University of Luxembourg

Joint work (in progress) with Alexander Kurz and Bruno Teheux

TACL 2022

Krip: Kripke frames with bounded morphisms MA: Modal algebras with homomorphisms

Krip: Kripke frames with bounded morphisms = $Coalg(\mathcal{P})$ MA: Modal algebras with homomorphisms = $Alg(\mathcal{O})$

Krip: Kripke frames with bounded morphisms = $Coalg(\mathcal{P})$ MA: Modal algebras with homomorphisms = $Alg(\mathcal{O})$

In general:

Krip: Kripke frames with bounded morphisms = $Coalg(\mathcal{P})$ MA: Modal algebras with homomorphisms = $Alg(\mathcal{O})$

In general:

Krip: Kripke frames with bounded morphisms = $Coalg(\mathcal{P})$ MA: Modal algebras with homomorphisms = $Alg(\mathcal{O})$

In general:

Going many-valued:

Replace the two-element Boolean algebra 2 by another finite algebra L.

T' \mathcal{V} \mathcal{V} \mathcal{V} \mathcal{V} \mathcal{M}'

• It should be based on a bounded lattice.

 T' \mathcal{X} $\mathcal{V}\mathbf{L}'$ M'

- It should be based on a bounded lattice.
- It should behave 'similarly' to 2.

- It should be based on a bounded lattice.
- It should behave 'similarly' to 2.
- It should generalize previous instances of many-valued modal logic.

- It should be based on a bounded lattice.
- It should behave 'similarly' to 2.
- It should generalize previous instances of many-valued modal logic.
- There should be a Stone-like duality for $\mathcal{V}\mathbf{L}$.
- There should be a nice description of \mathcal{X} .
- \bullet Correlation between Set-endofunctors and $\mathcal X\text{-endofunctors}.$

- It should be based on a bounded lattice.
- It should behave 'similarly' to 2.
- It should generalize previous instances of many-valued modal logic.
- There should be a Stone-like duality for $\mathcal{V}\mathbf{L}$.
- There should be a nice description of \mathcal{X} .
- \bullet Correlation between Set-endofunctors and $\mathcal X\text{-endofunctors}.$

Main Assumption

Let ${\boldsymbol{\mathsf{L}}}$ be a semi-primal bounded-lattice expansion.

- It should be based on a bounded lattice. \checkmark
- It should behave 'similarly' to 2.
- It should generalize previous instances of many-valued modal logic.
- There should be a Stone-like duality for $\mathcal{V}\mathbf{L}$.
- There should be a nice description of \mathcal{X} .
- Correlation between Set-endofunctors and \mathcal{X} -endofunctors.

Main Assumption

Let L be a semi-primal bounded-lattice expansion.

- \bullet It should be based on a bounded lattice. \checkmark
- It should behave 'similarly' to 2.
- It should generalize previous instances of many-valued modal logic.
- There should be a Stone-like duality for $\mathcal{V}L$.
- There should be a nice description of \mathcal{X} .
- \bullet Correlation between Set-endofunctors and $\mathcal X\text{-endofunctors}.$

Main Assumption

Let L be a semi-primal bounded-lattice expansion.

Definition (Foster 1953)

A finite algebra **P** is *primal* if every $f: P^k \to P$ is term-definable in **P**.

Definition (Foster 1953)

A finite algebra **P** is *primal* if every $f: P^k \to P$ is term-definable in **P**.

Theorem (Hu 1969)

Let **P** be primal. Then $\mathcal{V}\mathbf{P} \simeq \mathsf{B}\mathsf{A}$.

Definition (Foster 1953)

A finite algebra **P** is *primal* if every $f: P^k \to P$ is term-definable in **P**.

Theorem (Hu 1969)

Let ${\bf P}$ be primal. Then ${\cal V}{\bf P}\simeq {\sf B}{\sf A}.$

Definition (Foster, Pixley 1964)

A finite algebra **L** is *semi-primal* if every $f: L^k \to L$ which preserves subalgebras is term-definable in **L**.

Definition (Foster 1953)

A finite algebra **P** is *primal* if every $f: P^k \to P$ is term-definable in **P**.

Theorem (Hu 1969)

Let ${\bf P}$ be primal. Then ${\cal V}{\bf P}\simeq {\sf B}{\sf A}.$

Definition (Foster, Pixley 1964)

A finite algebra **L** is *semi-primal* if every $f: L^k \to L$ which preserves subalgebras is term-definable in **L**.

Definition (Pixley 1970)

A finite algebra \mathbf{Q} is *quasi-primal* if every $f: Q^k \to Q$ which preserves internal isomorphisms is term-definable. (Quasi-primal algebras are precisely the finite discriminator algebras)

Wolfgang Poiger (uni.lu)

Semi-primal modal logic

- \bullet It should be based on a bounded lattice. \checkmark
- It should behave 'similarly' to 2. \checkmark
- It should generalize previous instances of many-valued modal logic.
- There should be a Stone-like duality for $\mathcal{V}\mathbf{L}$.
- There should be a nice description of \mathcal{X} .
- \bullet Correlation between Set-endofunctors and $\mathcal X\text{-endofunctors}.$

Main Assumption

Let ${\boldsymbol{\mathsf{L}}}$ be a semi-primal bounded-lattice expansion.

- \bullet It should be based on a bounded lattice. \checkmark
- It should behave 'similarly' to 2. \checkmark
- It should generalize previous instances of many-valued modal logic.
- There should be a Stone-like duality for $\mathcal{V}\mathbf{L}$.
- There should be a nice description of \mathcal{X} .
- \bullet Correlation between Set-endofunctors and $\mathcal X\text{-endofunctors}.$

Main Assumption

Let L be a semi-primal bounded-lattice expansion.

$$C_n = \{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\}$$

$$C_n = \{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\}$$

•
$$\mathbf{t}_n = (C_n, \wedge, \vee, 0, 1, \oplus, \odot, \neg)$$
 Łukasiewicz

$$C_n = \{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\}$$

•
$$\mathbf{t}_n = (C_n, \land, \lor, 0, 1, \oplus, \odot, \neg)$$
 Łukasiewicz

•
$$\mathsf{LM}_n = (C_n, \wedge, \lor, 0, 1, \neg, (\tau_i)_{i=1}^n)$$
 Lukasiewicz-Moisil

$$C_n = \{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\}$$

•
$$\mathbf{t}_n = (C_n, \land, \lor, 0, 1, \oplus, \odot, \neg)$$
 Łukasiewicz

•
$$\mathbf{LM}_n = (C_n, \wedge, \lor, 0, 1, \neg, (\tau_i)_{i=1}^n)$$
 Łukasiewicz-Moisil

•
$$\mathbf{O}_n = (C_n, \land, \lor, 0, 1, \neg, f)$$
 (Davey, Gair 2017)
where $f(0) = 0$, $f(1) = 1$ and $f(\frac{i}{n}) = \frac{i+1}{n}$ for $1 \le i \le n-1$

$$C_n = \{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\}$$

•
$$\mathbf{L}_n = (C_n, \wedge, \lor, 0, 1, \oplus, \odot, \neg)$$
 Łukasiewicz

•
$$\mathbf{LM}_n = (C_n, \wedge, \vee, 0, 1, \neg, (\tau_i)_{i=1}^n)$$
 Łukasiewicz-Moisil

•
$$\mathbf{O}_n = (C_n, \land, \lor, 0, 1, \neg, f)$$
 (Davey, Gair 2017)
where $f(0) = 0$, $f(1) = 1$ and $f(\frac{i}{n}) = \frac{i+1}{n}$ for $1 \le i \le n-1$

•
$$\mathbf{T}_n = (C_n, \land, \lor, 0, 1, (T_{\frac{i}{n}})_{i=0}^n)$$

Let **L** be a finite algebra with bounded lattice reduct. Then **L** is semi-primal if and only if for every $a \in L$ the following $T_a : L \to L$ is term-definable in **L**:

$$T_{a}(x) = egin{cases} 1 & ext{if } x = a \ 0 & ext{if } x
eq a. \end{cases}$$

Let **L** be a finite algebra with bounded lattice reduct. Then **L** is semi-primal if and only if for every $a \in L$ the following $T_a : L \to L$ is term-definable in **L**:

$$T_a(x) = egin{cases} 1 & ext{if } x = a \ 0 & ext{if } x
eq a. \end{cases}$$

• Therefore, there exists a semi-primal algebra based on *any* bounded lattice.

Let **L** be a finite algebra with bounded lattice reduct. Then **L** is semi-primal if and only if for every $a \in L$ the following $T_a : L \to L$ is term-definable in **L**:

$$T_a(x) = egin{cases} 1 & ext{if } x = a \ 0 & ext{if } x
eq a. \end{cases}$$

- Therefore, there exists a semi-primal algebra based on *any* bounded lattice.
- Adding the terms T_a is not the same as adding constants a.

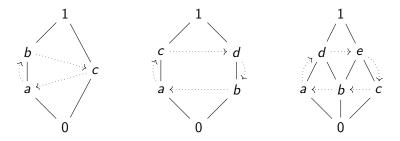
Let **L** be a finite algebra with bounded lattice reduct. Then **L** is semi-primal if and only if for every $a \in L$ the following $T_a : L \to L$ is term-definable in **L**:

$$T_a(x) = egin{cases} 1 & ext{if } x = a \ 0 & ext{if } x
eq a. \end{cases}$$

- Therefore, there exists a semi-primal algebra based on *any* bounded lattice.
- Adding the terms T_a is not the same as adding constants a.
- Given a finite bounded distributive lattice **D**, there is an axiomatization of modal logic over $(\mathbf{D}, \rightarrow, (T_d)_{d \in D})$ with Heyting implication interpreted on (crisp) Kripke frames. (Maruyama 2009)

Call an algebra $\mathbf{L} = (L, \wedge, \vee, 0, 1, ')$ pseudo-logic if 0' = 1 and 1' = 0.

Examples of semi-primal pseudo-logics: (Davey, Schumann, Werner 1991)



- \bullet It should be based on a bounded lattice. \checkmark
- It should behave 'similarly' to 2. \checkmark
- ullet It should generalize previous instances of many-valued modal logic. \checkmark
- There should be a Stone-like duality for $\mathcal{V}\mathbf{L}$.
- There should be a nice description of \mathcal{X} .
- \bullet Correlation between Set-endofunctors and $\mathcal X\text{-endofunctors}.$

Main Assumption

Let ${\boldsymbol{\mathsf{L}}}$ be a semi-primal bounded-lattice expansion.

- \bullet It should be based on a bounded lattice. \checkmark
- It should behave 'similarly' to 2. \checkmark
- It should generalize previous instances of many-valued modal logic. \checkmark
- There should be a Stone-like duality for $\mathcal{V}L$.
- There should be a nice description of \mathcal{X} .
- \bullet Correlation between Set-endofunctors and $\mathcal X\text{-endofunctors}.$

Main Assumption

Let L be a semi-primal bounded-lattice expansion.

Definition

We define a category Stone_L as follows:

Definition

We define a category Stone_L as follows: Objects are of the form (X, \mathbf{r}) where

- X is a Stone space.
- $\mathbf{r} \colon X \to \mathbb{S}(\mathbf{L})$ is a map such that $\mathbf{r}^{-1}(\mathbf{S}\downarrow)$ is closed for every subalgebra $\mathbf{S} \leq \mathbf{L}$.

Definition

We define a category Stone_L as follows: Objects are of the form (X, \mathbf{r}) where

- X is a Stone space.
- $\mathbf{r} \colon X \to \mathbb{S}(\mathbf{L})$ is a map such that $\mathbf{r}^{-1}(\mathbf{S}\downarrow)$ is closed for every subalgebra $\mathbf{S} \leq \mathbf{L}$.

Morphisms : $(X, \mathbf{r}) \to (X', \mathbf{r}')$ are continuous maps $f : X \to X'$ with

 $\mathbf{r}'(f(x)) \leq \mathbf{r}(x)$ for all $x \in X$.

Definition

We define a category Stone_L as follows: Objects are of the form (X, \mathbf{r}) where

- X is a Stone space.
- $\mathbf{r} \colon X \to \mathbb{S}(\mathbf{L})$ is a map such that $\mathbf{r}^{-1}(\mathbf{S}\downarrow)$ is closed for every subalgebra $\mathbf{S} \leq \mathbf{L}$.

Morphisms : $(X, \mathbf{r})
ightarrow (X', \mathbf{r}')$ are continuous maps f : X
ightarrow X' with

 $\mathbf{r}'(f(x)) \leq \mathbf{r}(x)$ for all $x \in X$.

Theorem (Keimel, Werner 1974 & Clark, Davey 1998)

There is a dual equivalence

Stone
$$\mathcal{V}$$

To obtain our coalgebraic base category \mathcal{X} , we forget topology:

Definition

We define a category Stone_L as follows: Objects are of the form (X, \mathbf{r}) where

- X is a Stone space.
- $\mathbf{r} \colon X \to \mathbb{S}(\mathbf{L})$ is a map such that $\mathbf{r}^{-1}(\mathbf{S}\downarrow)$ is closed for every subalgebra $\mathbf{S} \leq \mathbf{L}$.

Morphisms : $(X, \mathbf{r})
ightarrow (X', \mathbf{r}')$ are continuous maps $f \colon X
ightarrow X'$ with

 $\mathbf{r}'(f(x)) \leq \mathbf{r}(x)$ for all $x \in X$.

To obtain our coalgebraic base category \mathcal{X} , we forget topology:

Definition

We define a category Stone_L as follows: Objects are of the form (X, \mathbf{r}) where

- X is a Stone space.
- $\mathbf{r}: X \to \mathbb{S}(\mathbf{L})$ is a map such that $\mathbf{r}^{-1}(\mathbf{S}\downarrow)$ is closed for every subalgebra $\mathbf{S} \leq \mathbf{L}$.

Morphisms : $(X, \mathbf{r}) \rightarrow (X', \mathbf{r}')$ are continuous maps $f: X \rightarrow X'$ with

 $\mathbf{r}'(f(x)) \leq \mathbf{r}(x)$ for all $x \in X$.

To obtain our coalgebraic base category \mathcal{X} , we forget topology:

Definition

We define a category Set_{L} as follows: Objects are of the form (X, \mathbf{r}) where

- X is a Stone space set.
- $\mathbf{r}: X \to \mathbb{S}(\mathbf{L})$ is a map such that $\mathbf{r}^{-1}(\mathbf{S}\downarrow)$ is closed for every subalgebra $\mathbf{S} \leq \mathbf{L}$.

Morphisms : $(X, \mathbf{r}) \to (X', \mathbf{r}')$ are continuous maps $f : X \to X'$ with

 $\mathbf{r}'(f(x)) \leq \mathbf{r}(x)$ for all $x \in X$.

Reasonable requirements for the algebra of truth-degrees L:

- \bullet It should be based on a bounded lattice. \checkmark
- It should behave 'similarly' to 2. \checkmark
- It should generalize previous instances of many-valued modal logic. \checkmark
- There should be a Stone-like duality for $\mathcal{V}\mathbf{L}$. \checkmark
- There should be a nice description of \mathcal{X} . \checkmark
- \bullet Correlation between Set-endofunctors and $\mathcal X\text{-endofunctors}.$

Main Assumption

Let L be a semi-primal bounded-lattice expansion.

Reasonable requirements for the algebra of truth-degrees L:

- \bullet It should be based on a bounded lattice. \checkmark
- It should behave 'similarly' to 2. \checkmark
- It should generalize previous instances of many-valued modal logic. \checkmark
- There should be a Stone-like duality for $\mathcal{V}\mathbf{L}$. \checkmark
- \bullet There should be a nice description of $\mathcal{X}.$ \checkmark
- Correlation between Set-endofunctors and \mathcal{X} -endofunctors.

Main Assumption

Let L be a semi-primal bounded-lattice expansion.

Lifting functors (1)

Proposition

To every Set-endofunctor T there is natural way to associate a Set_{L} -endofunctor T' with T'U = T (here U is the forgetful functor).

$$\mathsf{T} \stackrel{\frown}{\subset} \mathsf{Set} \xleftarrow{\mathsf{U}} \mathsf{Set}_{\mathsf{L}} \stackrel{\frown}{\to} \mathsf{T}'$$

Lifting functors (1)

Proposition

To every Set-endofunctor T there is natural way to associate a Set_{L} -endofunctor T' with T'U = T (here U is the forgetful functor).

$$\mathsf{T} \stackrel{{}^\frown}{\overset{}_{\overset{}}{\overset{}}} \mathsf{Set} \xleftarrow{\mathsf{U}}{\overset{}_{\overset{}}{\overset{}}} \mathsf{Set}_{\mathbf{L}} \stackrel{{}^\frown}{\overset{}} \mathsf{T}'$$

Example 1: T = P, the (covariant) powerset functor. Then Coalg(P') corresponds to the following:

Definition

A crisp **L**-frame is a triple (W, R, \mathbf{r}) such that

• (W, R) is a Kripke-frame.

•
$$(W, \mathbf{r}) \in \mathsf{Set}_{\mathsf{L}}$$
 (i.e. $\mathbf{r} : W \to \mathbb{S}(\mathsf{L})$).

• Compatibility: $wRw' \Rightarrow \mathbf{r}(w') \subseteq \mathbf{r}(w)$.

Lifting functors (2)

Proposition

To every Set-endofunctor T there is natural way to associate a Set_{L} -endofunctor T' with T'U = T (here U is the forgetful functor).

$$\mathsf{T} \bigcirc \mathsf{Set} \longleftarrow \mathsf{U} \longrightarrow \mathsf{Set}_{\mathsf{L}} \mathrel{\check{\supset}} \mathsf{T}'$$

Example 2: $T = \mathcal{L}$, given on objects by $\mathcal{L}(X) = L^X$. Then $\text{Coalg}(\mathcal{L}')$ corresponds to the following:

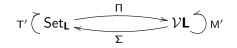
Definition

A **L**-frame is a triple (W, R, \mathbf{r}) such that

• (W, R) is a **L**-labeled Kripke-frame, i.e. $R: W \times W \rightarrow L$.

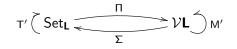
•
$$(W, \mathbf{r}) \in \mathsf{Set}_{\mathsf{L}}$$
 (i.e. $\mathbf{r} : W \to \mathbb{S}(\mathsf{L})$).

• Compatibility: $R(w, w') \neq 0 \Rightarrow \mathbf{r}(w') \subseteq \mathbf{r}(w)$.



Ingredients:

- A (representation of the) functor M' for the 'syntax'.
- A natural transformation $\delta \colon M'\Pi \Rightarrow \Pi T'$ for the 'semantics'.

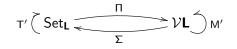


Ingredients:

- A (representation of the) functor M' for the 'syntax'.
- A natural transformation $\delta \colon M'\Pi \Rightarrow \Pi T'$ for the 'semantics'.

From coalgebras to algebras:

$$W \xrightarrow{\xi} T'W$$

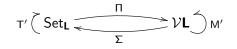


Ingredients:

- A (representation of the) functor M' for the 'syntax'.
- A natural transformation $\delta \colon M'\Pi \Rightarrow \Pi T'$ for the 'semantics'.

From coalgebras to algebras:

$$W \xrightarrow{\xi} T'W$$
$$\Pi T'W \xrightarrow{\Pi\xi} \Pi W$$



Ingredients:

- A (representation of the) functor M' for the 'syntax'.
- A natural transformation $\delta \colon M'\Pi \Rightarrow \Pi T'$ for the 'semantics'.

From coalgebras to algebras:

$$W \xrightarrow{\xi} T'W$$

$$\mathsf{M}' \sqcap W \xrightarrow{\delta_W} \sqcap \mathsf{T}' W \xrightarrow{\Pi_{\xi}} \sqcap W$$

Example

Definition

A crisp **L**-frame is (W, R, \mathbf{r}) such that

- (W, R) is a Kripke-frame.
- $(W, \mathbf{r}) \in \mathsf{Set}_{\mathsf{L}}$ (i.e. $\mathbf{r} : W \to \mathbb{S}(\mathsf{L})$).
- Compatibility: $wRw' \Rightarrow \mathbf{r}(w') \subseteq \mathbf{r}(w)$.

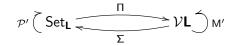
A crisp L-frame is (W, R, \mathbf{r}, Val) such that, in addition

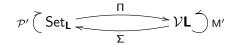
 $Val: W \times \mathsf{Prop} \to L$

always satisfies $Val(w, p) \in \mathbf{r}(w)$. We extend Val to all modal formulas using the rule

$$Val(w, \Box \varphi) = \bigwedge \{ Val(w', \varphi) \mid wRw' \}$$

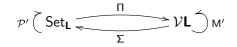
Example





 M' takes an algebra A ∈ VL to the free algebra generated by {□a | a ∈ A} quotiented by the equations

$$\Box 1 pprox 1, \quad \Box (a \wedge b) pprox \Box a \wedge \Box b, \quad \Box au_\ell (a) pprox au_\ell (\Box a)$$

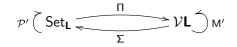


 M' takes an algebra A ∈ VL to the free algebra generated by {□a | a ∈ A} quotiented by the equations

$$\Box 1 pprox 1, \quad \Box (a \wedge b) pprox \Box a \wedge \Box b, \quad \Box au_\ell(a) pprox au_\ell(\Box a)$$

• $\delta_X : \mathsf{M}' \Pi X \to \Pi \mathcal{P}' X$ is determined by

$$\Box f\mapsto (Y\mapsto igwedge_{y\in Y}f(y))$$



 M' takes an algebra A ∈ VL to the free algebra generated by {□a | a ∈ A} quotiented by the equations

$$\Box 1 pprox 1, \quad \Box (a \wedge b) pprox \Box a \wedge \Box b, \quad \Box au_\ell(a) pprox au_\ell(\Box a)$$

• $\delta_X : \mathsf{M}' \Pi X \to \Pi \mathcal{P}' X$ is determined by

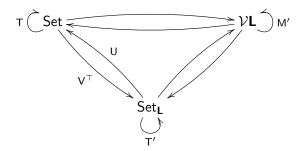
$$\Box f \mapsto (Y \mapsto \bigwedge_{y \in Y} f(y))$$

• Completeness amounts to injectivity of δ .

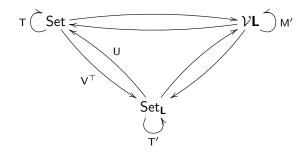
Wolfgang Poiger (uni.lu)

Usually in MV-modal logic, people seem more interested in the correspondence

Usually in MV-modal logic, people seem more interested in the correspondence

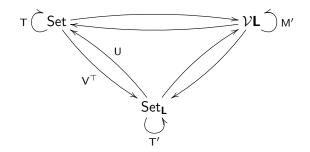


Usually in MV-modal logic, people seem more interested in the correspondence



 $\mathsf{V}^\top\dashv\mathsf{U}$

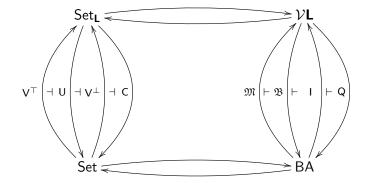
Usually in MV-modal logic, people seem more interested in the correspondence



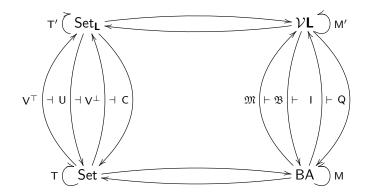
$$V^{\top} \dashv U$$

 $V^{\top}(X) = (X, \mathbf{r}^{\top})$ assigns $\mathbf{r}^{\top}(x) = \mathbf{L}$ for all $x \in X$.

More connections



More connections



Thanks for your attention!