Page 102 - Textos de Matemática Vol. 36
P. 102

92 Bibliography [Redh59] Redheffer, R.M. (1959). Inequalities for a matrix Riccati equation. J.
Math. Mech., 8, 349-367. See also: Supplementary Note, ibid. 9, 745-748. [Redh75] Redheffer, R.M. (1975). Matrix differential equations. Bull. Amer.
Math. Soc., 81, 485-488.
[ReVo96] Redheffer, R. and Volkmann, P. (1996). Differential equations in op- erator algebras II. Invariance of the order cone. J. Differential Equ., 130, 356-367.
[Reid72] Reid, W.T. (1972). Riccati differential equations. Academic Press, New York, London.
[Reid60] Reid, W.T. (1960). Properties of solutions of a Riccati matrix differ- ential equation. J. Math. Mech., 9, 749-770.
[SWSp95] Sain, M.K., Won, C.H. and Spencer Jr., B.F. (1995). Cumulants in risk-sensitive-control: The full state feedback cost variance case. Proceed- ings 34th CDC, 1036-1041.
[Schn73] Schneider, C.R. (1973). Global aspects of the matrix Riccati equation. Math. Systems Theory, 7, 281-286.
[Shay86] Shayman, M.A. (1986). Phase portrait of the matrix Riccati equation. SIAM J. Control Optim., 24, 1-65.
[Shay91] Shayman, M.A. (1991). A Geometric View of the Matrix Riccati Equa- tion. In The Riccati equation, S. Bittanti, A.J. Laub and J.C. Willems (eds.). Springer, New York, 89-112.
[ShYa97] Shoshitaishvili, A. and Yaroshevskaya, I. (1997). On the solvability of the Sylvester equation. J. Math. Sci., 83, 550-553.
[Sima96] Sima, V. (1996) Algorithms for linear quadratic optimization. Marcel Dekker, New York.
[SiCr73a] Simaan, M. and Cruz, J.B. Jr. (1973). Sampled-data Nash controls in non-zero-sum differential games. Int. J. Control, 17, 1201-1209.
[SoWi85] Sorine, M. and Winternitz, P. (1985). Superposition laws for solutions of differential matrix Riccati equations arising in control theory. IEEE Trans. Automat. Control, 30, 266-272.
[Staf98] Staffans, O.J. (1998). Coprime factorizations and well-posed linear sys- tems. SIAM J. Control Optim., 36, 1268–1292.
[Staf99] Staffans, O.J. (1999). Quadratic optimal control of well-posed linear systems. SIAM J. Control Optim., 37, 131–164.


































































































   100   101   102   103   104