Page 101 - Textos de Matemática Vol. 36
P. 101
Bibliography 91
[LeRo93] Lerer, L. and Rodman, L. (1993). Sylvester and Lyapunov equations and some interpolation problems for rational matrix functions. Linear Algebra Appl., 185, 83-117.
[LeRo99] Lerer, L. and Rodman, L. (1999). Inertia theorems for Hilbert space operators based on Lyapunov and Stein equations. Math. Nachr., 198, 131-148.
[LeRo99a] Lerer, L. and Rodman, L. (1999). Bezoutians of rational matrix func- tions, matrix equations and factorizations. Linear Algebra Appl., 302-303, 105-133.
[Loew97] Loewy, R. (1997). An inertia theorem for Lyapunov’s equation and the dimension of a controllability space. Linear Algebra Appl., 260, 1-7.
[Mart71] Martensson, K. (1971). On the matrix Riccati equation. Information Sci., 3, 17-49.
[Meda82] Medanic, J. (1982). Geometric properties and invariant manifolds of the Riccati equation. IEEE Trans. Automat. Control, 27, 670-677.
[Mehr91] Mehrmann, V.L. (1991). The autonomous linear quadratic control problem. Theory and numerical solution. Lecture Notes in Control and Information Sciences, 163, Springer, Berlin.
[OaVa00] Oar˘a C., and Varga A. (2000). Computation of general inner–outer and spectral factorizations. IEEE Trans. Automat. Control, 45(12), 2307– 2325.
[OMal74] O’Malley Jr., R.E. (1974). Introduction to singular perturbations. Academic Press, New York.
[OsSc62] Ostrowski, A. and Schneider, H. (1962). Some theorems on the inertia of general matrices. J. Math. Anal. Appl., 4, 72-84.
[PadA97] Pavon, M. and d’Alessandro, D. (1997). Families of solutions of matrix Riccati differential equations. SIAM J. Control Optim., 35, 194-204.
[Popo73] Popov, V.M. (1973). Hyperstability of control systems. Springer, Berlin, New York. (Romanian version in 1966).
[Rado27] Radon, J. (1927). U¨ber die Oszillationstheoreme der kunjugierten Punkte beim Probleme von Lagrange. Mu¨nchener Sitzungsberichte, 57, 243-257.
[Rado28] Radon, J. (1928). Zum Problem von Lagrange. Hamburger Math. Einzelschr., 6.