Page 99 - Textos de Matemática Vol. 36
P. 99
Bibliography 89
[HeMa82] Hermann, R. and Martin, C. (1982). Lie and Morse theory for peri- odic orbits of vector fields and matrix Riccati equations. I. General Lie- theoretic methods. Math. Systems Theory, 15, 277-284.
[HeMa83] Hermann, R. and Martin, C. (1983). Lie and Morse theory for peri- odic orbits of vector fields and matrix Riccati equations. II. Math. Systems Theory, 16, 297-306.
[IOW97] Ionescu, V., Oar˘a, C. and Weiss, M. (1997). General matrix pencil techniques for the solution of the algebraic Riccati equations. IEEE Trans. Automat. Control 42, 1085–1097.
[IOW99] Ionescu, V., Oar˘a, C. and Weiss, M. (1999). Generalized Riccati Theory and Robust Control: A Popov Function Approach John Wiley, New York.
[JaKu98] Jank, G. and Kun, G. (1998). Solutions of generalized Riccati dif- ferential equations and their approximation. Computational Methods and Function Theory (CMFT ’97). St. Ruscheweyh and E.B. Saff (eds.), World Scientific Publishing Co., 1-18.
[KaKw86] Kaper, H.G. and Kwong, M.K. (1986). Asymptotics of the Titchmarsh-Weyl m-coefficient for integrable potentials. Proc. R. Soc. Ed- inb., Sect. A 103, 347-358.
[KaLe01a] Karelin, I., Lerer, L. (2001). Generalized Bezoutian, factorization of rational matrix functions and matrix quadratic equations. In Vol. 122 of Operator Theory: Advances and Applications, 303-321. Birkh¨auser, Basel.
[KaLe01b] Karelin, I., Lerer, L. (2001). Matrix quadratic equations, col- umn/row reduced factorizations and an inertia theorem for matrix poly- nomials. Int. J. Appl. Math. Comput. Sci., 11, 1285-1310.
[KLR01] Karelin, I., Lerer, L. and Ran, A.C.M. (2001). J-symmetric factor- izations and algebraic Riccati equations. In Vol. 124 of Operator Theory: Advances and Applications, 319-360. Birkhuser, Basel.
[Kato66] Kato, T. (1966). Perturbation theory for linear operators. Springer, New York.
[KnKa74] Knobloch, H.W. and Kappel, F. (1974). Gew¨ohnliche Differentialgle- ichungen. B.G. Teubner, Stuttgart.
[KnPo97] Knobloch, H.W. and Pohl, M. (1997). On Riccati matrix differential equations. Results in Math., 31, 337-364.
[KOS76] Kokotovich, P.V, O’Malley Jr., R.E. and Sannuti, P. (1976). Singular perturbations and order reduction in control theory: an overview. Auto- matica, 12, 123-321.